בערך זה נעשה שימוש בסימנים מוסכמים מתחום המתמטיקה. להבהרת הסימנים ראו סימון מתמטי.
במתמטיקה, מספר ממשי הוא כל מספררציונלי או אי רציונלי במערכת המספרים, כגון או . בעזרת מספרים ממשיים ניתן למדוד גדלים רציפים, כגון טמפרטורה, מרחק, וכו'.
ניתן לראות את המספרים הממשיים החיוביים כאורכים של קטעים על ישראינסופי (הקרוי, לפיכך, הישר הממשי). לכל מספר חיובי מתאים גם מספר שלילי באותו גודל, המודד את אותו קטע בכיוון ההפוך.
קיימת התאמה בין הישר הממשי למספרים הממשיים, כך שכל מספר ממשי מייצג נקודה אחת ויחידה על הישר הממשי וכל נקודה על הישר הממשי מייצגת מספר ממשי אחד ויחיד.
התפיסה לפיה קיימות נקודות רבות בין מספרים רציונליים, כמו השורש הריבועי של 2, הייתה מוכרת היטב ליוונים הקדמונים. קיומו של ישר מספרים רציף נחשב מובן מאליו, אך טבעה של המשכיות זו, הנקראת כיום שלמות, לא הובן. המתודולוגיה הריגורוזית שפותחה עבור הגאומטריה לא עברה למושג המספרים עד למאה ה-19.
עבור מתמטיקאים יוונים, מספרים היו רק המספרים הטבעיים. מספרים ממשיים נקראו "פרופורציות", שהם היחסים של שני אורכים, כלומר, מידות של אורך במונחים של אורך אחר, הנקרא יחידת אורך. שני אורכים הם "ניתנים להשוואה", אם יש יחידה שבה שניהם נמדדים במספרים שלמים, כלומר, בטרמינולוגיה המודרנית, אם היחס שלהם הוא מספר רציונלי. אאודוקסוס מקנידוס (בערך 390-340 לפנה"ס) סיפק הגדרה לשוויון של שתי פרופורציות אי-רציונליות באופן הדומה לחתכי דדקינד (שהוכנסו יותר מ-2,000 שנים מאוחר יותר). ניתן לראות זאת כהגדרה הראשונה של המספרים הממשיים.
ימי הביניים הביאו את קבלתם של אפס, מספרים שליליים, מספרים שלמים ושברים, תחילה על ידי מתמטיקאים הודים וסינים, ולאחר מכן על ידי מתמטיקאים ערבים, שהיו גם הראשונים להתייחס למספרים אי-רציונליים כעצמים אלגבריים (האחרונים התאפשרו על ידי התפתחות האלגברה).
התיאורים הבלתי פורמליים לעיל של המספרים הממשיים אינם מספיקים כדי להבטיח את נכונותן של הוכחות למשפטים הכוללים מספרים ממשיים. ההבנה שדרושה הגדרה טובה יותר, והפיתוח של הגדרה כזו היו התפתחות מרכזית של המתמטיקה של המאה ה-19. ב-1872 פרסם גאורג קנטור מאמר שבו הגדיר את המספרים הממשיים באמצעות סדרות קושי של מספרים רציונליים; הגדרתו (השקולה) של ריכרד דדקינד את המספרים הממשיים באמצעות חתכי דדקינד פורסמה מעט מאוחר יותר באותה שנה.
מספרים רציונליים ואלגבריים
לאחר שקובעים את אורכה של יחידה המידה היסודית, האורך של מספר יחידות כאלה נקרא מספר שלם. מספר ממשי שאפשר לבטא כיחס בין שני מספרים שלמים נקרא מספר רציונלי, אך רוב המספרים הממשיים אינם כאלה. עוצמתה של קבוצת המספרים הממשיים היא עוצמת הרצף שאיננה בת מנייה (כפי שהוכח באמצעות האלכסון של קנטור), ואילו אוסף המספרים הרציונליים הוא בן-מנייה. המספרים הממשיים שאינם רציונליים, כגון שורש 2, או e, נקראים אי-רציונליים. את קבוצת המספרים האי-רציונליים אפשר לחלק לשתי תת-קבוצות:
לכל מספר ממשי אי-שלילי יש שורש ריבועי ממשי, ולכל מספר ממשי שלילי אין שורש ריבועי ממשי. למספרים שליליים יש שורש מדומה. למעשה, השורשים באים בזוגות: אם אז שניהם שורשים ממשיים של ואם אז שניהם שורשים מדומים של . באופן כללי, הפתרון של משוואה ריבועית הוא שני מספרים מרוכבים (כולל ריבוי). כל מספר ממשי הוא גם מספר מרוכב.
ההצגה העשרונית
כל מספר ממשי אפשר להציג כשבר עשרוני, בעל מספר סופי או אינסופי של ספרות מימין לנקודה. לחלק מהמספרים הרציונליים הייצוג כשבר עשרוני הוא סופי (למשל: 0.5=1/2), ולאחרים - אינסופי ומחזורי, למשל: ...0.08536585365=7/82 (מחזור בן 5 ספרות).
מספרים שהם שברים עשרוניים סופיים ניתנים להצגה כשברים אינסופיים בשתי דרכים:
הוספת כמות אינסופית של אפסים אחרי הספרה העשרונית האחרונה. למשל: ...32.4800000000000 = 32.48
כיוון ש-0.999... שווה ל-1, ניתן לרשום גם ....65.299999999999 = 65.3
למספרים האי-רציונליים הייצוג כשבר עשרוני אינו מחזורי. למשל, הוא מספר טרנסצנדנטי, והייצוג העשרוני שלו אינו מחזורי. חמישים הספרות הראשונות הן . לצרכים מעשיים ניתן להסתפק בדיוק נמוך יותר, ומקובל להסתפק בקירובים 3.14 או 3.14159.
מרחק וטופולוגיה
בטופולוגיה, קבוצת המספרים הממשיים יוצרת מרחב מטרי, שבו המרחק בין ל- מוגדר כערך המוחלט. בדרך זו התאמתם של המספרים הממשיים לנקודות על הישר הממשי מאפשרת לבטא את אורכו של כל קטע במישור.