Transcendental number

In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are π and e.[1][2] The quality of a number being transcendental is called transcendence.

Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental, transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set.

All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic.[3][4][5][6] The converse is not true: Not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers.[3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x2x − 1 = 0.

History

The name "transcendental" comes from Latin trānscendere 'to climb over or beyond, surmount',[7] and was first used for the mathematical concept in Leibniz's 1682 paper in which he proved that sin x is not an algebraic function of x.[8] Euler, in the eighteenth century, was probably the first person to define transcendental numbers in the modern sense.[9]

Johann Heinrich Lambert conjectured that e and π were both transcendental numbers in his 1768 paper proving the number π is irrational, and proposed a tentative sketch proof that π is transcendental.[10]

Joseph Liouville first proved the existence of transcendental numbers in 1844,[11] and in 1851 gave the first decimal examples such as the Liouville constant

in which the nth digit after the decimal point is 1 if n is equal to k! (k factorial) for some k and 0 otherwise.[12] In other words, the nth digit of this number is 1 only if n is one of the numbers 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers, named in his honour. Liouville showed that all Liouville numbers are transcendental.[13]

The first number to be proven transcendental without having been specifically constructed for the purpose of proving transcendental numbers' existence was e, by Charles Hermite in 1873.

In 1874 Georg Cantor proved that the algebraic numbers are countable and the real numbers are uncountable. He also gave a new method for constructing transcendental numbers.[14] Although this was already implied by his proof of the countability of the algebraic numbers, Cantor also published a construction that proves there are as many transcendental numbers as there are real numbers.[a] Cantor's work established the ubiquity of transcendental numbers.

In 1882 Ferdinand von Lindemann published the first complete proof that π is transcendental. He first proved that ea is transcendental if a is a non-zero algebraic number. Then, since e = −1 is algebraic (see Euler's identity), must be transcendental. But since i is algebraic, π must therefore be transcendental. This approach was generalized by Karl Weierstrass to what is now known as the Lindemann–Weierstrass theorem. The transcendence of π implies that geometric constructions involving compass and straightedge only cannot produce certain results, for example squaring the circle.

In 1900 David Hilbert posed a question about transcendental numbers, Hilbert's seventh problem: If a is an algebraic number that is not zero or one, and b is an irrational algebraic number, is ab necessarily transcendental? The affirmative answer was provided in 1934 by the Gelfond–Schneider theorem. This work was extended by Alan Baker in the 1960s in his work on lower bounds for linear forms in any number of logarithms (of algebraic numbers).[16]

Properties

A transcendental number is a (possibly complex) number that is not the root of any integer polynomial. Every real transcendental number must also be irrational, since a rational number is the root of an integer polynomial of degree one.[17] The set of transcendental numbers is uncountably infinite. Since the polynomials with rational coefficients are countable, and since each such polynomial has a finite number of zeroes, the algebraic numbers must also be countable. However, Cantor's diagonal argument proves that the real numbers (and therefore also the complex numbers) are uncountable. Since the real numbers are the union of algebraic and transcendental numbers, it is impossible for both subsets to be countable. This makes the transcendental numbers uncountable.

No rational number is transcendental and all real transcendental numbers are irrational. The irrational numbers contain all the real transcendental numbers and a subset of the algebraic numbers, including the quadratic irrationals and other forms of algebraic irrationals.

Applying any non-constant single-variable algebraic function to a transcendental argument yields a transcendental value. For example, from knowing that π is transcendental, it can be immediately deduced that numbers such as , , , and are transcendental as well.

However, an algebraic function of several variables may yield an algebraic number when applied to transcendental numbers if these numbers are not algebraically independent. For example, π and (1 − π) are both transcendental, but π + (1 − π) = 1 is obviously not. It is unknown whether e + π, for example, is transcendental, though at least one of e + π and must be transcendental. More generally, for any two transcendental numbers a and b, at least one of a + b and ab must be transcendental. To see this, consider the polynomial (xa)(xb) = x2 − (a + b) x + a b . If (a + b) and a b were both algebraic, then this would be a polynomial with algebraic coefficients. Because algebraic numbers form an algebraically closed field, this would imply that the roots of the polynomial, a and b, must be algebraic. But this is a contradiction, and thus it must be the case that at least one of the coefficients is transcendental.

The non-computable numbers are a strict subset of the transcendental numbers.

All Liouville numbers are transcendental, but not vice versa. Any Liouville number must have unbounded partial quotients in its simple continued fraction expansion. Using a counting argument one can show that there exist transcendental numbers which have bounded partial quotients and hence are not Liouville numbers.

Using the explicit continued fraction expansion of e, one can show that e is not a Liouville number (although the partial quotients in its continued fraction expansion are unbounded). Kurt Mahler showed in 1953 that π is also not a Liouville number. It is conjectured that all infinite continued fractions with bounded terms, that have a "simple" structure, and that are not eventually periodic are transcendental[18] (in other words, algebraic irrational roots of at least third degree polynomials do not have apparent pattern in their continued fraction expansions, since eventually periodic continued fractions correspond to quadratic irrationals, see Hermite's problem).

Numbers proven to be transcendental

Numbers proven to be transcendental:

  • π (by the Lindemann–Weierstrass theorem).
  • if is algebraic and nonzero (by the Lindemann–Weierstrass theorem), in particular Euler's number e.
  • where is a positive integer; in particular Gelfond's constant (by the Gelfond–Schneider theorem).
  • Algebraic combinations of and such as and (following from their algebraic independence).[19]
  • where is algebraic but not 0 or 1, and is irrational algebraic, in particular the Gelfond–Schneider constant (by the Gelfond–Schneider theorem).
  • The natural logarithm if is algebraic and not equal to 0 or 1, for any branch of the logarithm function (by the Lindemann–Weierstrass theorem).
  • if and are positive integers not both powers of the same integer, and is not equal to 1 (by the Gelfond–Schneider theorem).
  • All numbers of the form are transcendental, where are algebraic for all and are non-zero algebraic for all (by Baker's theorem).
  • The trigonometric functions and their hyperbolic counterparts, for any nonzero algebraic number , expressed in radians (by the Lindemann–Weierstrass theorem).
  • Non-zero results of the inverse trigonometric functions and their hyperbolic counterparts, for any algebraic number (by the Lindemann–Weierstrass theorem).
  • , for rational such that .[20]
  • The fixed point of the cosine function (also referred to as the Dottie number ) – the unique real solution to the equation , where is in radians (by the Lindemann–Weierstrass theorem).[21]
  • if is algebraic and nonzero, for any branch of the Lambert W Function (by the Lindemann–Weierstrass theorem), in particular the omega constant Ω.
  • if both and the order are algebraic such that , for any branch of the generalized Lambert W function.[22]
  • , the square super-root of any natural number is either an integer or transcendental (by the Gelfond–Schneider theorem).
  • Values of the gamma function of rational numbers that are of the form or .[23]
  • Algebraic combinations of and or of and such as the lemniscate constant (following from their respective algebraic independences).[19]
  • The values of Beta function if and are non-integer rational numbers.[24]
  • The Bessel function of the first kind , its first derivative, and the quotient are transcendental when is rational and is algebraic and nonzero,[25] and all nonzero roots of and are transcendental when is rational.[26]
  • The number , where and are Bessel functions and is the Euler–Mascheroni constant.[27][28]
  • Any Liouville number, in particular: Liouville's constant.
  • Numbers with large irrationality measure, such as the Champernowne constant (by Roth's theorem).
  • Numbers artificially constructed not to be algebraic periods.[29]
  • Any non-computable number, in particular: Chaitin's constant.
  • Constructed irrational numbers which are not simply normal in any base.[30]
  • Any number for which the digits with respect to some fixed base form a Sturmian word.[31]
  • The Prouhet–Thue–Morse constant[32] and the related rabbit constant.[33]
  • The Komornik–Loreti constant.[34]
  • The paperfolding constant (also named as "Gaussian Liouville number").[35]
  • The values of the infinite series with fast convergence rate as defined by Y. Gao and J. Gao, such as .[36]
  • Numbers of the form and For b > 1 where is the floor function.[11][37][38][39][40][41]
  • Any number of the form (where , are polynomials in variables and , is algebraic and , is any integer greater than 1).[42]
  • The numbers and with only two different decimal digits whose nonzero digit positions are given by the Moser–de Bruijn sequence and its double.[43]
  • The values of the Rogers-Ramanujan continued fraction where is algebraic and .[44] The lemniscatic values of theta function (under the same conditions for ) are also transcendental.[45]
  • j(q) where is algebraic but not imaginary quadratic (i.e, the exceptional set of this function is the number field whose degree of extension over is 2).
  • The constants and in the formula for first index of occurrence of Gijswijt's sequence, where k is any integer greater than 1.[46]

Conjectured transcendental numbers

Numbers which have yet to be proven to be either transcendental or algebraic:

  • Most nontrivial combinations of two or more transcendental numbers are themselves not known to be transcendental or even irrational: , e + π, ππ, ee, πe, π2, eπ2. It has been shown that both e + π and π/e do not satisfy any polynomial equation of degree and integer coefficients of average size 109.[47][48] At least one of the numbers ee and ee2 is transcendental.[49] Schanuel's conjecture would imply that all of the above numbers are transcendental and algebraically independent.[50]
  • The Euler–Mascheroni constant γ: In 2010 it has been shown that an infinite list of Euler-Lehmer constants (which includes γ/4) contains at most one algebraic number.[51][52] In 2012 it was shown that at least one of γ and the Gompertz constant δ is transcendental.[53]
  • The values of the Riemann zeta function ζ(n) at odd positive integers ; in particular Apéry's constant ζ(3), which is known to be irrational. For the other numbers ζ(5), ζ(7), ζ(9), ... even this is not known.
  • The values of the Dirichlet beta function β(n) at even positive integers ; in particular Catalan's Constant β(2). (none of them are known to be irrational).[54]
  • Values of the Gamma Function Γ(1/n) for positive integers and are not known to be irrational, let alone transcendental.[55][56] For at least one the numbers Γ(1/n) and Γ(2/n) is transcendental.[24]
  • Any number given by some kind of limit that is not obviously algebraic.[56]

Proofs for specific numbers

A proof that e is transcendental

The first proof that the base of the natural logarithms, e, is transcendental dates from 1873. We will now follow the strategy of David Hilbert (1862–1943) who gave a simplification of the original proof of Charles Hermite. The idea is the following:

Assume, for purpose of finding a contradiction, that e is algebraic. Then there exists a finite set of integer coefficients c0, c1, ..., cn satisfying the equation: It is difficult to make use of the integer status of these coefficients when multiplied by a power of the irrational e, but we can absorb those powers into an integral which “mostly” will assume integer values. For a positive integer k, define the polynomial and multiply both sides of the above equation by to arrive at the equation:

By splitting respective domains of integration, this equation can be written in the form where Here P will turn out to be an integer, but more importantly it grows quickly with k.

Lemma 1

There are arbitrarily large k such that is a non-zero integer.

Proof. Recall the standard integral (case of the Gamma function) valid for any natural number . More generally,

if then .

This would allow us to compute exactly, because any term of can be rewritten as through a change of variables. Hence That latter sum is a polynomial in with integer coefficients, i.e., it is a linear combination of powers with integer coefficients. Hence the number is a linear combination (with those same integer coefficients) of factorials ; in particular is an integer.

Smaller factorials divide larger factorials, so the smallest occurring in that linear combination will also divide the whole of . We get that from the lowest power term appearing with a nonzero coefficient in , but this smallest exponent is also the multiplicity of as a root of this polynomial. is chosen to have multiplicity of the root and multiplicity of the roots for , so that smallest exponent is for and for with . Therefore divides .

To establish the last claim in the lemma, that is nonzero, it is sufficient to prove that does not divide . To that end, let be any prime larger than and . We know from the above that divides each of for , so in particular all of those are divisible by . It comes down to the first term . We have (see falling and rising factorials) and those higher degree terms all give rise to factorials or larger. Hence That right hand side is a product of nonzero integer factors less than the prime , therefore that product is not divisible by , and the same holds for ; in particular cannot be zero.

Lemma 2

For sufficiently large k, .

Proof. Note that

where u(x), v(x) are continuous functions of x for all x, so are bounded on the interval [0, n]. That is, there are constants G, H > 0 such that

So each of those integrals composing Q is bounded, the worst case being

It is now possible to bound the sum Q as well:

where M is a constant not depending on k. It follows that

finishing the proof of this lemma.

Conclusion

Choosing a value of k that satisfies both lemmas leads to a non-zero integer added to a vanishingly small quantity being equal to zero: an impossibility. It follows that the original assumption, that e can satisfy a polynomial equation with integer coefficients, is also impossible; that is, e is transcendental.

The transcendence of π

A similar strategy, different from Lindemann's original approach, can be used to show that the number π is transcendental. Besides the gamma-function and some estimates as in the proof for e, facts about symmetric polynomials play a vital role in the proof.

For detailed information concerning the proofs of the transcendence of π and e, see the references and external links.

See also

Number systems
Complex
Real
Rational
Integer
Natural
Zero: 0
One: 1
Prime numbers
Composite numbers
Negative integers
Fraction
Finite decimal
Dyadic (finite binary)
Repeating decimal
Irrational
Algebraic irrational
Irrational period
Transcendental
Imaginary

Notes

  1. ^ Cantor's construction builds a one-to-one correspondence between the set of transcendental numbers and the set of real numbers. In this article, Cantor only applies his construction to the set of irrational numbers.[15]

References

  1. ^ Pickover, Cliff. "The 15 most famous transcendental numbers". sprott.physics.wisc.edu. Retrieved 2020-01-23.
  2. ^ Shidlovskii, Andrei B. (June 2011). Transcendental Numbers. Walter de Gruyter. p. 1. ISBN 9783110889055.
  3. ^ a b Bunday, B. D.; Mulholland, H. (20 May 2014). Pure Mathematics for Advanced Level. Butterworth-Heinemann. ISBN 978-1-4831-0613-7. Retrieved 21 March 2021.
  4. ^ Baker, A. (1964). "On Mahler's classification of transcendental numbers". Acta Mathematica. 111: 97–120. doi:10.1007/bf02391010. S2CID 122023355.
  5. ^ Heuer, Nicolaus; Loeh, Clara (1 November 2019). "Transcendental simplicial volumes". arXiv:1911.06386 [math.GT].
  6. ^ "Real number". Encyclopædia Britannica. mathematics. Retrieved 2020-08-11.
  7. ^ "transcendental". Oxford English Dictionary. s.v.
  8. ^ Leibniz, Gerhardt & Pertz 1858, pp. 97–98; Bourbaki 1994, p. 74
  9. ^ Erdős & Dudley 1983
  10. ^ Lambert 1768
  11. ^ a b Kempner 1916
  12. ^ "Weisstein, Eric W. "Liouville's Constant", MathWorld".
  13. ^ Liouville 1851
  14. ^ Cantor 1874; Gray 1994
  15. ^ Cantor 1878, p. 254
  16. ^ Baker, Alan (1998). J.J. O'Connor and E.F. Robertson. www-history.mcs.st-andrews.ac.uk (biographies). The MacTutor History of Mathematics archive. St. Andrew's, Scotland: University of St. Andrew's.
  17. ^ Hardy 1979
  18. ^ Adamczewski & Bugeaud 2005
  19. ^ a b Nesterenko, Yu V (1996-10-31). "Modular functions and transcendence questions". Sbornik: Mathematics. 187 (9): 1319–1348. Bibcode:1996SbMat.187.1319N. doi:10.1070/SM1996v187n09ABEH000158. ISSN 1064-5616.
  20. ^ Weisstein, Eric W. "Transcendental Number". mathworld.wolfram.com. Retrieved 2023-08-09.
  21. ^ Weisstein, Eric W. "Dottie Number". Wolfram MathWorld. Wolfram Research, Inc. Retrieved 23 July 2016.
  22. ^ Mező, István; Baricz, Árpád (June 22, 2015). "On the generalization of the Lambert W function". arXiv:1408.3999 [math.CA].
  23. ^ Chudnovsky, G. (1984). Contributions to the theory of transcendental numbers. Mathematical surveys and monographs (in English and Russian). Providence, R.I: American Mathematical Society. ISBN 978-0-8218-1500-7.
  24. ^ a b Waldschmidt, Michel (September 7, 2005). "Transcendence of Periods: The State of the Art" (PDF). webusers.imj-prg.fr.
  25. ^ Siegel, Carl L. (2014). "Über einige Anwendungen diophantischer Approximationen: Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1". On Some Applications of Diophantine Approximations (in German). Scuola Normale Superiore. pp. 81–138. doi:10.1007/978-88-7642-520-2_2. ISBN 978-88-7642-520-2.
  26. ^ Lorch, Lee; Muldoon, Martin E. (1995). "Transcendentality of zeros of higher dereivatives of functions involving Bessel functions". International Journal of Mathematics and Mathematical Sciences. 18 (3): 551–560. doi:10.1155/S0161171295000706.
  27. ^ Mahler, Kurt; Mordell, Louis Joel (1968-06-04). "Applications of a theorem by A. B. Shidlovski". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 305 (1481): 149–173. Bibcode:1968RSPSA.305..149M. doi:10.1098/rspa.1968.0111. S2CID 123486171.
  28. ^ Lagarias, Jeffrey C. (2013-07-19). "Euler's constant: Euler's work and modern developments". Bulletin of the American Mathematical Society. 50 (4): 527–628. arXiv:1303.1856. doi:10.1090/S0273-0979-2013-01423-X. ISSN 0273-0979.
  29. ^ Yoshinaga, Masahiko (2008-05-03). "Periods and elementary real numbers". arXiv:0805.0349 [math.AG].
  30. ^ Bugeaud 2012, p. 113.
  31. ^ Pytheas Fogg 2002
  32. ^ Mahler 1929; Allouche & Shallit 2003, p. 387
  33. ^ Weisstein, Eric W. "Rabbit Constant". mathworld.wolfram.com. Retrieved 2023-08-09.
  34. ^ Allouche, Jean-Paul; Cosnard, Michel (2000), "The Komornik–Loreti constant is transcendental", American Mathematical Monthly, 107 (5): 448–449, doi:10.2307/2695302, JSTOR 2695302, MR 1763399
  35. ^ "A143347 - OEIS". oeis.org. Retrieved 2023-08-09.
  36. ^ "A140654 - OEIS". oeis.org. Retrieved 2023-08-12.
  37. ^ Adamczewski, Boris (March 2013). "The Many Faces of the Kempner Number". arXiv:1303.1685 [math.NT].
  38. ^ Shallit 1996
  39. ^ Adamczewski, Boris; Rivoal, Tanguy (2009). "Irrationality measures for some automatic real numbers". Mathematical Proceedings of the Cambridge Philosophical Society. 147 (3): 659–678. Bibcode:2009MPCPS.147..659A. doi:10.1017/S0305004109002643. ISSN 1469-8064.
  40. ^ Loxton 1988
  41. ^ Allouche & Shallit 2003, pp. 385, 403
  42. ^ Kurosawa, Takeshi (2007-03-01). "Transcendence of certain series involving binary linear recurrences". Journal of Number Theory. 123 (1): 35–58. doi:10.1016/j.jnt.2006.05.019. ISSN 0022-314X.
  43. ^ Blanchard & Mendès France 1982
  44. ^ Duverney, Daniel; Nishioka, Keiji; Nishioka, Kumiko; Shiokawa, Iekata (1997). "Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers". Proceedings of the Japan Academy, Series A, Mathematical Sciences. 73 (7): 140–142. doi:10.3792/pjaa.73.140. ISSN 0386-2194.
  45. ^ Bertrand, Daniel (1997). "Theta functions and transcendence". The Ramanujan Journal. 1 (4): 339–350. doi:10.1023/A:1009749608672. S2CID 118628723.
  46. ^ van de Pol, Levi (2022). "The first occurrence of a number in Gijswijt's sequence". arXiv:2209.04657 [math.CO].
  47. ^ Bailey, David H. (1988). "Numerical Results on the Transcendence of Constants Involving $\pi, e$, and Euler's Constant". Mathematics of Computation. 50 (181): 275–281. doi:10.2307/2007931. ISSN 0025-5718. JSTOR 2007931.
  48. ^ Weisstein, Eric W. "e". mathworld.wolfram.com. Retrieved 2023-08-12.
  49. ^ Brownawell, W. Dale (1974-02-01). "The algebraic independence of certain numbers related by the exponential function". Journal of Number Theory. 6 (1): 22–31. Bibcode:1974JNT.....6...22B. doi:10.1016/0022-314X(74)90005-5. ISSN 0022-314X.
  50. ^ Waldschmidt, Michel (2021). "Schanuel's Conjecture: algebraic independence of transcendental numbers" (PDF).
  51. ^ Murty, M. Ram; Saradha, N. (2010-12-01). "Euler–Lehmer constants and a conjecture of Erdös". Journal of Number Theory. 130 (12): 2671–2682. doi:10.1016/j.jnt.2010.07.004. ISSN 0022-314X.
  52. ^ Murty, M. Ram; Zaytseva, Anastasia (2013-01-01). "Transcendence of generalized Euler constants". The American Mathematical Monthly. 120 (1): 48–54. doi:10.4169/amer.math.monthly.120.01.048. ISSN 0002-9890. S2CID 20495981.
  53. ^ Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal. 61 (2): 239–254. doi:10.1307/mmj/1339011525. ISSN 0026-2285.
  54. ^ Rivoal, T.; Zudilin, W. (2003-08-01). "Diophantine properties of numbers related to Catalan's constant". Mathematische Annalen. 326 (4): 705–721. doi:10.1007/s00208-003-0420-2. hdl:1959.13/803688. ISSN 1432-1807. S2CID 59328860.
  55. ^ "Mathematical constants". Mathematics (general). Cambridge University Press. Retrieved 2022-09-22.
  56. ^ a b Waldschmidt, Michel (2022). "Transcendental Number Theory: recent results and open problems". Michel Waldschmidt.

Sources

Read other articles:

Dies ist eine Liste der Universitäten (niederländisch universiteiten) und Fachhochschulen (niederländisch hogescholen, deutsch: Hochschule) in den Niederlanden. Es gibt 13 staatlich finanzierte Universitäten[1] mit 327.300 Studenten, eine staatlich finanzierte Fernuniversität sowie 36 vom Staat finanzierte Fachhochschulen[2] mit 490.452 Studenten (Stand: 1. Oktober 2020). Inhaltsverzeichnis 1 Universitäten 1.1 Staatlich finanzierte Universitäten 1.2 Nicht staatlich fina...

 

Cet article est une ébauche concernant les relations internationales. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Relations entre le Kosovo et l'Union européenne Kosovo Union européenne modifier  Les relations entre l'Union européenne et le Kosovo furent établies officiellement lors de sa déclaration d’indépendance en 2008. Le Kosovo (selon le statut défini par la résolution 1244 du Consei...

 

Zoe Sugg Sugg en VidCon 2014Información personalNombre de nacimiento Zoe Elizabeth SuggNombre en inglés ZOE SUGG Apodo ZoellaNacimiento 28 de marzo de 1990 (33 años)Lacock, Inglaterra, Reino UnidoNacionalidad BritánicaFamiliaPareja Alfie Deyes (2012-presente)Hijos 1EducaciónEducada en The Corsham School Información profesionalOcupación Youtuber, escritora, bloguera, novelista y productora de televisión Área Blog, moda y estilo de vida Años activa desde 2009Seudónimo Zoella Sit...

العلاقات الصينية القطرية الصين قطر   الصين   قطر تعديل مصدري - تعديل   العلاقات الصينية القطرية هي العلاقات الثنائية التي تجمع بين الصين وقطر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الصين قطر المساحة (كم2)...

 

Public park in London, England Victoria Tower Gardens, 2011, with the Buxton Memorial Fountain and the Palace of Westminster in the background Victoria Tower Gardens is a public park along the north bank of the River Thames in London, adjacent to the Victoria Tower, at the south-western corner of the Palace of Westminster. The park, extends southwards from the Palace to Lambeth Bridge, between Millbank and the river. It forms part of the Thames Embankment. Victoria Tower Gardens is a Grade II...

 

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Mittelstadt (Begriffsklärung) aufgeführt. Stralsund, Mittelstadt in Vorpommern mit rund 58.000 Einwohnern Hof (Saale) in Bayern mit rund 47.000 Einwohnern Mittelstadt ist ein vorwiegend in Deutschland genutzter Ausdruck für die Klassifikation einer Stadt mit mindestens 20.000 und unter 100.000 Einwohnern. Ende 2020 lebten in Deutschland 22,9 Millionen Menschen (27,5 %) in Mittelstädten. Inhaltsverzeich...

Manusia merasakan respon kasih sayang dari hewan-hewan yang masih muda: memiliki mata besar, tengkorak menonjol, dagu mundur (kolom kiri). Hewan bermata kecil, dan moncong panjang (kolom kanan) tidak menimbulkan respons yang sama. —Konrad Lorenz[1] Keimutan atau kelucuan adalah istilah subjektif untuk menunjuk jenis kemenarikan fisik yang umumnya berhubungan dengan kemudaan dan penampilan. Istilah ini juga dikenal dalam ilmu etologi, yang pertama kali diperkenalkan oleh Konrad Loren...

 

الحرب السويدية الفرنسية جزء من الحروب النابليونية    التاريخ وسيط property غير متوفر. بداية 31 أكتوبر 1805  نهاية 6 يناير 1810  تعديل مصدري - تعديل   كانت الحرب الفرنسية السويدية أو الحرب البومرانية هي أول مشاركة للسويد في الحروب النابليونية. انضمت البلاد إلى التحالف ال

 

العلاقات البليزية الفانواتية بليز فانواتو   بليز   فانواتو تعديل مصدري - تعديل   العلاقات البليزية الفانواتية هي العلاقات الثنائية التي تجمع بين بليز وفانواتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بلي...

Microsoft Visual Studio Express Edition Información generalTipo de programa IDEDesarrollador Microsoft CorporationLicencia Gratuito / freewareVersionesÚltima versión estable Microsoft Visual Studio Express 2013 ( 12 de noviembre del 2013)Enlaces Sitio web oficial [editar datos en Wikidata] Microsoft Visual Studio Express Edition es un programa de desarrollo en entorno de desarrollo integrado (IDE, por sus siglas en inglés) para sistemas operativos Windows desarrollado y distribu...

 

Dewan Perwakilan Rakyat Daerah Kabupaten PonorogoDewan Perwakilan RakyatKabupaten Ponorogo2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai1 September 2019PimpinanKetuaSunarto, S.Pd. (NasDem) sejak 7 Oktober 2019 Wakil Ketua IDwi Agus Prayitno, S.H., M.Si. (PKB) sejak 7 Oktober 2019 Wakil Ketua IIH. Miseri Efendi, S.H., M.H. (Demokrat) sejak 7 Oktober 2019 Wakil Ketua IIIAnik Suharto, S.Sos. (Gerindra) sejak 7 Oktober 2019 KomposisiAnggota45Partai &...

 

1948 massacre by British soldiers of defenceless men during the Malayan Emergency Batang Kali MassacrePart of the Malayan EmergencyHulu Selangor shown within Selangor stateLocationBatang Kali, Selangor, Malaya (now Malaysia)Date12 December 1948TargetDefenceless Malay and Chinese menAttack typeMassacreDeaths24Perpetrator Scots GuardsVerdictUK Courts ruled that although the Scots Guards had massacred civilians, none of the soldiers would be prosecuted The Batang Kali massacre was the killing by...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2018) دييغو خيرمان مارتينيز معلومات شخصية الميلاد 5 أغسطس 1981 (42 سنة)[1]  مونتفيدو  مركز اللعب حارس مرمى  الجنسية الأوروغواي  تعديل مصدري - تعديل   دي...

 

American television series (1970–1977) McCloudGenreCrime dramaMysteryCreated byHerman MillerStarringDennis Weaver J. D. Cannon Terry Carter Ken LynchDiana Muldaur (seasons 6 and 7)ComposersDavid Shire Stu Phillips Frank De VolCountry of originUnited StatesOriginal languageEnglishNo. of seasons7No. of episodes45 (+1 TV movie) (list of episodes)ProductionExecutive producersGlen A. Larson Leslie StevensCinematographyJohn M. Stephens Ben Colman Sol NegrinRunning time120 min. (20 episodes) 90 mi...

 

Adi WinarsoWali Kota Tegal ke-15Masa jabatan23 Maret 1999 – 23 Maret 2009PresidenB.J. HabibieAbdurrahman WahidMegawati SukarnoputriSusilo Bambang YudhoyonoGubernurMardiyantoBibit WaluyoWakilDr. Maufur, M.Pd.PendahuluMuhammad ZakirPenggantiIkmal Jaya Informasi pribadiLahir(1950-12-11)11 Desember 1950Panggang, Jepara, Jepara, Jawa TengahMeninggal8 September 2023(2023-09-08) (umur 72)Surabaya, Jawa TimurAlma materAkademi Angkatan Laut (1974)Karier militerPihak IndonesiaD...

Amusement park in Rovaniemi, Finland You can help expand this article with text translated from the corresponding article in Finnish. (January 2017) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not transla...

 

Genus of palms Andean wax palms Ceroxylon quindiuense Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Arecales Family: Arecaceae Subfamily: Ceroxyloideae Tribe: Ceroxyleae Genus: CeroxylonBonpl. ex DC. Type species Ceroxylon alpinum Synonyms[1] Klopstockia H.Karst. Beethovenia Engel Ceroxylon is a genus of flowering plants in the family Arecaceae, native to the Andes in Venezuela, Colombia, Ecuador, Peru, and...

 

Han Seung-soo한승수韓昇洙Perdana Menteri Korea SelatanMasa jabatan29 Februari 2008 – 29 September 2009PendahuluHan Duck-sooPenggantiBelum ada Informasi pribadiPartai politikGNPPekerjaanPolitikusSunting kotak info • L • B Han Seung-sooHangul한승수 Hanja韓昇洙 Alih AksaraHan Seung-suMcCune–ReischauerHan Sŭng-su Dr. Han Seung-soo (lahir 28 Desember 1936 di Gangwon) adalah politisi dan diplomat Korea Selatan. Ia menjabat sebagai Perdana Menteri Korea Selata...

  هذه المقالة عن عروة بن الورد. لمعانٍ أخرى، طالع ورد (توضيح). عروة بن الورد الممثل مهيار خضور يجسد دور عروة بن الورد في مسلسل عنترة[1] معلومات شخصية اسم الولادة عروة بن الورد العبسي الميلاد سنة 540  الجزيرة العربية الوفاة سنة 607 (66–67 سنة)  الجزيرة العربية الإقام...

 

Ministry of Agriculture and ForestryFinnish: maa- ja metsätalousministeriöSwedish: jord- och skogsbruksministerietMinistry overviewJurisdictionFinnish GovernmentHeadquartersHallituskatu 3 AHelsinkiEmployees250[1]Annual budget€2.752 billion (2022)Minister responsibleSari Essayah, Minister of Agriculture and ForestryMinistry executiveJaana Husu-KallioWebsitemmm.fi Politics of Finland State Constitution Declaration of Independence Human rights Law enforcement Military Executive Presi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!