Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental, transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set.
All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic.[3][4][5][6] The converse is not true: Not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers.[3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x2 − x − 1 = 0.
History
The name "transcendental" comes from Latin trānscendere 'to climb over or beyond, surmount',[7] and was first used for the mathematical concept in Leibniz's 1682 paper in which he proved that sin x is not an algebraic function of x.[8]Euler, in the eighteenth century, was probably the first person to define transcendental numbers in the modern sense.[9]
Johann Heinrich Lambert conjectured that e and π were both transcendental numbers in his 1768 paper proving the number π is irrational, and proposed a tentative sketch proof that π is transcendental.[10]
Joseph Liouville first proved the existence of transcendental numbers in 1844,[11] and in 1851 gave the first decimal examples such as the Liouville constant
in which the nth digit after the decimal point is 1 if n is equal to k! (kfactorial) for some k and 0 otherwise.[12] In other words, the nth digit of this number is 1 only if n is one of the numbers 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers, named in his honour. Liouville showed that all Liouville numbers are transcendental.[13]
The first number to be proven transcendental without having been specifically constructed for the purpose of proving transcendental numbers' existence was e, by Charles Hermite in 1873.
In 1874 Georg Cantor proved that the algebraic numbers are countable and the real numbers are uncountable. He also gave a new method for constructing transcendental numbers.[14] Although this was already implied by his proof of the countability of the algebraic numbers, Cantor also published a construction that proves there are as many transcendental numbers as there are real numbers.[a]
Cantor's work established the ubiquity of transcendental numbers.
In 1882 Ferdinand von Lindemann published the first complete proof that π is transcendental. He first proved that ea is transcendental if a is a non-zero algebraic number. Then, since eiπ = −1 is algebraic (see Euler's identity), iπ must be transcendental. But since i is algebraic, π must therefore be transcendental. This approach was generalized by Karl Weierstrass to what is now known as the Lindemann–Weierstrass theorem. The transcendence of π implies that geometric constructions involving compass and straightedge only cannot produce certain results, for example squaring the circle.
In 1900 David Hilbert posed a question about transcendental numbers, Hilbert's seventh problem: If a is an algebraic number that is not zero or one, and b is an irrational algebraic number, is ab necessarily transcendental? The affirmative answer was provided in 1934 by the Gelfond–Schneider theorem. This work was extended by Alan Baker in the 1960s in his work on lower bounds for linear forms in any number of logarithms (of algebraic numbers).[16]
Properties
A transcendental number is a (possibly complex) number that is not the root of any integer polynomial. Every real transcendental number must also be irrational, since a rational number is the root of an integer polynomial of degree one.[17] The set of transcendental numbers is uncountably infinite. Since the polynomials with rational coefficients are countable, and since each such polynomial has a finite number of zeroes, the algebraic numbers must also be countable. However, Cantor's diagonal argument proves that the real numbers (and therefore also the complex numbers) are uncountable. Since the real numbers are the union of algebraic and transcendental numbers, it is impossible for both subsets to be countable. This makes the transcendental numbers uncountable.
No rational number is transcendental and all real transcendental numbers are irrational. The irrational numbers contain all the real transcendental numbers and a subset of the algebraic numbers, including the quadratic irrationals and other forms of algebraic irrationals.
Applying any non-constant single-variable algebraic function to a transcendental argument yields a transcendental value. For example, from knowing that π is transcendental, it can be immediately deduced that numbers such as , , , and are transcendental as well.
However, an algebraic function of several variables may yield an algebraic number when applied to transcendental numbers if these numbers are not algebraically independent. For example, π and (1 − π) are both transcendental, but π + (1 − π) = 1 is obviously not. It is unknown whether e + π, for example, is transcendental, though at least one of e + π and eπ must be transcendental. More generally, for any two transcendental numbers a and b, at least one of a + b and ab must be transcendental. To see this, consider the polynomial (x − a)(x − b) = x2 − (a + b) x + a b . If (a + b) and a b were both algebraic, then this would be a polynomial with algebraic coefficients. Because algebraic numbers form an algebraically closed field, this would imply that the roots of the polynomial, a and b, must be algebraic. But this is a contradiction, and thus it must be the case that at least one of the coefficients is transcendental.
All Liouville numbers are transcendental, but not vice versa. Any Liouville number must have unbounded partial quotients in its simple continued fraction expansion. Using a counting argument one can show that there exist transcendental numbers which have bounded partial quotients and hence are not Liouville numbers.
Using the explicit continued fraction expansion of e, one can show that e is not a Liouville number (although the partial quotients in its continued fraction expansion are unbounded). Kurt Mahler showed in 1953 that π is also not a Liouville number. It is conjectured that all infinite continued fractions with bounded terms, that have a "simple" structure, and that are not eventually periodic are transcendental[18] (in other words, algebraic irrational roots of at least third degree polynomials do not have apparent pattern in their continued fraction expansions, since eventually periodic continued fractions correspond to quadratic irrationals, see Hermite's problem).
The fixed point of the cosine function (also referred to as the Dottie number) – the unique real solution to the equation , where is in radians (by the Lindemann–Weierstrass theorem).[21]
if is algebraic and nonzero, for any branch of the Lambert W Function (by the Lindemann–Weierstrass theorem), in particular the omega constantΩ.
if both and the order are algebraic such that , for any branch of the generalized Lambert W function.[22]
, the square super-root of any natural number is either an integer or transcendental (by the Gelfond–Schneider theorem).
Values of the gamma function of rational numbers that are of the form or .[23]
Algebraic combinations of and or of and such as the lemniscate constant (following from their respective algebraic independences).[19]
The values of Beta function if and are non-integer rational numbers.[24]
The Bessel function of the first kind, its first derivative, and the quotient are transcendental when is rational and is algebraic and nonzero,[25] and all nonzero roots of and are transcendental when is rational.[26]
j(q) where is algebraic but not imaginary quadratic (i.e, the exceptional set of this function is the number field whose degree of extension over is 2).
The constants and in the formula for first index of occurrence of Gijswijt's sequence, where k is any integer greater than 1.[46]
Conjectured transcendental numbers
Numbers which have yet to be proven to be either transcendental or algebraic:
Most nontrivial combinations of two or more transcendental numbers are themselves not known to be transcendental or even irrational: eπ, e + π, ππ, ee, πe, π√2, eπ2. It has been shown that both e + π and π/e do not satisfy any polynomial equation of degree and integer coefficients of average size 109.[47][48] At least one of the numbers ee and ee2 is transcendental.[49]Schanuel's conjecture would imply that all of the above numbers are transcendental and algebraically independent.[50]
The values of the Riemann zeta functionζ(n) at odd positive integers ; in particular Apéry's constantζ(3), which is known to be irrational. For the other numbers ζ(5), ζ(7), ζ(9), ... even this is not known.
Values of the Gamma FunctionΓ(1/n) for positive integers and are not known to be irrational, let alone transcendental.[55][56] For at least one the numbers Γ(1/n) and Γ(2/n) is transcendental.[24]
Any number given by some kind of limit that is not obviously algebraic.[56]
Assume, for purpose of finding a contradiction, that e is algebraic. Then there exists a finite set of integer coefficients c0, c1, ..., cn satisfying the equation:
It is difficult to make use of the integer status of these coefficients when multiplied by a power of the irrational e, but we can absorb those powers into an integral which “mostly” will assume integer values. For a positive integer k, define the polynomial
and multiply both sides of the above equation by
to arrive at the equation:
By splitting respective domains of integration, this equation can be written in the form
where
Here P will turn out to be an integer, but more importantly it grows quickly with k.
Lemma 1
There are arbitrarily large k such that is a non-zero integer.
This would allow us to compute exactly, because any term of can be rewritten as
through a change of variables. Hence
That latter sum is a polynomial in with integer coefficients, i.e., it is a linear combination of powers with integer coefficients. Hence the number is a linear combination (with those same integer coefficients) of factorials ; in particular is an integer.
Smaller factorials divide larger factorials, so the smallest occurring in that linear combination will also divide the whole of . We get that from the lowest power term appearing with a nonzero coefficient in , but this smallest exponent is also the multiplicity of as a root of this polynomial. is chosen to have multiplicity of the root and multiplicity of the roots for , so that smallest exponent is for and for with . Therefore divides .
To establish the last claim in the lemma, that is nonzero, it is sufficient to prove that does not divide . To that end, let be any prime larger than and . We know from the above that divides each of for , so in particular all of those are divisible by . It comes down to the first term . We have (see falling and rising factorials)
and those higher degree terms all give rise to factorials or larger. Hence
That right hand side is a product of nonzero integer factors less than the prime , therefore that product is not divisible by , and the same holds for ; in particular cannot be zero.
Lemma 2
For sufficiently large k, .
Proof. Note that
where u(x), v(x) are continuous functions of x for all x, so are bounded on the interval [0, n]. That is, there are constants G, H > 0 such that
So each of those integrals composing Q is bounded, the worst case being
It is now possible to bound the sum Q as well:
where M is a constant not depending on k. It follows that
finishing the proof of this lemma.
Conclusion
Choosing a value of k that satisfies both lemmas leads to a non-zero integer added to a vanishingly small quantity being equal to zero: an impossibility. It follows that the original assumption, that e can satisfy a polynomial equation with integer coefficients, is also impossible; that is, e is transcendental.
The transcendence of π
A similar strategy, different from Lindemann's original approach, can be used to show that the number π is transcendental. Besides the gamma-function and some estimates as in the proof for e, facts about symmetric polynomials play a vital role in the proof.
For detailed information concerning the proofs of the transcendence of π and e, see the references and external links.
^
Cantor's construction builds a one-to-one correspondence between the set of transcendental numbers and the set of real numbers. In this article, Cantor only applies his construction to the set of irrational numbers.[15]
^Weisstein, Eric W. "Dottie Number". Wolfram MathWorld. Wolfram Research, Inc. Retrieved 23 July 2016.
^Mező, István; Baricz, Árpád (June 22, 2015). "On the generalization of the Lambert W function". arXiv:1408.3999 [math.CA].
^Chudnovsky, G. (1984). Contributions to the theory of transcendental numbers. Mathematical surveys and monographs (in English and Russian). Providence, R.I: American Mathematical Society. ISBN978-0-8218-1500-7.
^Weisstein, Eric W. "Rabbit Constant". mathworld.wolfram.com. Retrieved 2023-08-09.
^Allouche, Jean-Paul; Cosnard, Michel (2000), "The Komornik–Loreti constant is transcendental", American Mathematical Monthly, 107 (5): 448–449, doi:10.2307/2695302, JSTOR2695302, MR1763399
Burger, Edward B.; Tubbs, Robert (2004). Making transcendence transparent. An intuitive approach to classical transcendental number theory. Springer. ISBN978-0-387-21444-3. Zbl1092.11031.
Calude, Cristian S. (2002). Information and Randomness: An algorithmic perspective. Texts in Theoretical Computer Science (2nd rev. and ext. ed.). Springer. ISBN978-3-540-43466-5. Zbl1055.68058.
Lambert, J.H. (1768). "Mémoire sur quelques propriétés remarquables des quantités transcendantes, circulaires et logarithmiques". Mémoires de l'Académie Royale des Sciences de Berlin: 265–322.
Pytheas Fogg, N. (2002). Berthé, V.; Ferenczi, Sébastien; Mauduit, Christian; Siegel, A. (eds.). Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics. Vol. 1794. Springer. ISBN978-3-540-44141-0. Zbl1014.11015.
Shallit, J. (15–26 July 1996). "Number theory and formal languages". In Hejhal, D.A.; Friedman, Joel; Gutzwiller, M.C.; Odlyzko, A.M. (eds.). Emerging Applications of Number Theory. IMA Summer Program. The IMA Volumes in Mathematics and its Applications. Vol. 109. Minneapolis, MN: Springer (published 1999). pp. 547–570. ISBN978-0-387-98824-5.
External links
Wikisource has original text related to this article:
Fritsch, R. (29 March 1988). Transzendenz von e im Leistungskurs? [Transcendence of e in advanced courses?] (PDF). Rahmen der 79. Hauptversammlung des Deutschen Vereins zur Förderung des mathematischen und naturwissenschaftlichen Unterrichts [79th Annual, General Meeting of the German Association for the Promotion of Mathematics and Science Education]. Der mathematische und naturwissenschaftliche Unterricht (in German). Vol. 42. Kiel, DE (published 1989). pp. 75–80 (presentation), 375–376 (responses). Archived from the original(PDF) on 2011-07-16 – via University of Munich (mathematik.uni-muenchen.de ). — Proof that e is transcendental, in German.
Dies ist eine Liste der Universitäten (niederländisch universiteiten) und Fachhochschulen (niederländisch hogescholen, deutsch: Hochschule) in den Niederlanden. Es gibt 13 staatlich finanzierte Universitäten[1] mit 327.300 Studenten, eine staatlich finanzierte Fernuniversität sowie 36 vom Staat finanzierte Fachhochschulen[2] mit 490.452 Studenten (Stand: 1. Oktober 2020). Inhaltsverzeichnis 1 Universitäten 1.1 Staatlich finanzierte Universitäten 1.2 Nicht staatlich fina...
Cet article est une ébauche concernant les relations internationales. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Relations entre le Kosovo et l'Union européenne Kosovo Union européenne modifier Les relations entre l'Union européenne et le Kosovo furent établies officiellement lors de sa déclaration d’indépendance en 2008. Le Kosovo (selon le statut défini par la résolution 1244 du Consei...
Zoe Sugg Sugg en VidCon 2014Información personalNombre de nacimiento Zoe Elizabeth SuggNombre en inglés ZOE SUGG Apodo ZoellaNacimiento 28 de marzo de 1990 (33 años)Lacock, Inglaterra, Reino UnidoNacionalidad BritánicaFamiliaPareja Alfie Deyes (2012-presente)Hijos 1EducaciónEducada en The Corsham School Información profesionalOcupación Youtuber, escritora, bloguera, novelista y productora de televisión Área Blog, moda y estilo de vida Años activa desde 2009Seudónimo Zoella Sit...
العلاقات الصينية القطرية الصين قطر الصين قطر تعديل مصدري - تعديل العلاقات الصينية القطرية هي العلاقات الثنائية التي تجمع بين الصين وقطر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة الصين قطر المساحة (كم2)...
Public park in London, England Victoria Tower Gardens, 2011, with the Buxton Memorial Fountain and the Palace of Westminster in the background Victoria Tower Gardens is a public park along the north bank of the River Thames in London, adjacent to the Victoria Tower, at the south-western corner of the Palace of Westminster. The park, extends southwards from the Palace to Lambeth Bridge, between Millbank and the river. It forms part of the Thames Embankment. Victoria Tower Gardens is a Grade II...
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Mittelstadt (Begriffsklärung) aufgeführt. Stralsund, Mittelstadt in Vorpommern mit rund 58.000 Einwohnern Hof (Saale) in Bayern mit rund 47.000 Einwohnern Mittelstadt ist ein vorwiegend in Deutschland genutzter Ausdruck für die Klassifikation einer Stadt mit mindestens 20.000 und unter 100.000 Einwohnern. Ende 2020 lebten in Deutschland 22,9 Millionen Menschen (27,5 %) in Mittelstädten. Inhaltsverzeich...
Manusia merasakan respon kasih sayang dari hewan-hewan yang masih muda: memiliki mata besar, tengkorak menonjol, dagu mundur (kolom kiri). Hewan bermata kecil, dan moncong panjang (kolom kanan) tidak menimbulkan respons yang sama. —Konrad Lorenz[1] Keimutan atau kelucuan adalah istilah subjektif untuk menunjuk jenis kemenarikan fisik yang umumnya berhubungan dengan kemudaan dan penampilan. Istilah ini juga dikenal dalam ilmu etologi, yang pertama kali diperkenalkan oleh Konrad Loren...
الحرب السويدية الفرنسية جزء من الحروب النابليونية التاريخ وسيط property غير متوفر. بداية 31 أكتوبر 1805 نهاية 6 يناير 1810 تعديل مصدري - تعديل كانت الحرب الفرنسية السويدية أو الحرب البومرانية هي أول مشاركة للسويد في الحروب النابليونية. انضمت البلاد إلى التحالف ال
العلاقات البليزية الفانواتية بليز فانواتو بليز فانواتو تعديل مصدري - تعديل العلاقات البليزية الفانواتية هي العلاقات الثنائية التي تجمع بين بليز وفانواتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بلي...
Microsoft Visual Studio Express Edition Información generalTipo de programa IDEDesarrollador Microsoft CorporationLicencia Gratuito / freewareVersionesÚltima versión estable Microsoft Visual Studio Express 2013 ( 12 de noviembre del 2013)Enlaces Sitio web oficial [editar datos en Wikidata] Microsoft Visual Studio Express Edition es un programa de desarrollo en entorno de desarrollo integrado (IDE, por sus siglas en inglés) para sistemas operativos Windows desarrollado y distribu...
Dewan Perwakilan Rakyat Daerah Kabupaten PonorogoDewan Perwakilan RakyatKabupaten Ponorogo2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahSesi baru dimulai1 September 2019PimpinanKetuaSunarto, S.Pd. (NasDem) sejak 7 Oktober 2019 Wakil Ketua IDwi Agus Prayitno, S.H., M.Si. (PKB) sejak 7 Oktober 2019 Wakil Ketua IIH. Miseri Efendi, S.H., M.H. (Demokrat) sejak 7 Oktober 2019 Wakil Ketua IIIAnik Suharto, S.Sos. (Gerindra) sejak 7 Oktober 2019 KomposisiAnggota45Partai &...
1948 massacre by British soldiers of defenceless men during the Malayan Emergency Batang Kali MassacrePart of the Malayan EmergencyHulu Selangor shown within Selangor stateLocationBatang Kali, Selangor, Malaya (now Malaysia)Date12 December 1948TargetDefenceless Malay and Chinese menAttack typeMassacreDeaths24Perpetrator Scots GuardsVerdictUK Courts ruled that although the Scots Guards had massacred civilians, none of the soldiers would be prosecuted The Batang Kali massacre was the killing by...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2018) دييغو خيرمان مارتينيز معلومات شخصية الميلاد 5 أغسطس 1981 (42 سنة)[1] مونتفيدو مركز اللعب حارس مرمى الجنسية الأوروغواي تعديل مصدري - تعديل دي...
American television series (1970–1977) McCloudGenreCrime dramaMysteryCreated byHerman MillerStarringDennis Weaver J. D. Cannon Terry Carter Ken LynchDiana Muldaur (seasons 6 and 7)ComposersDavid Shire Stu Phillips Frank De VolCountry of originUnited StatesOriginal languageEnglishNo. of seasons7No. of episodes45 (+1 TV movie) (list of episodes)ProductionExecutive producersGlen A. Larson Leslie StevensCinematographyJohn M. Stephens Ben Colman Sol NegrinRunning time120 min. (20 episodes) 90 mi...
Adi WinarsoWali Kota Tegal ke-15Masa jabatan23 Maret 1999 – 23 Maret 2009PresidenB.J. HabibieAbdurrahman WahidMegawati SukarnoputriSusilo Bambang YudhoyonoGubernurMardiyantoBibit WaluyoWakilDr. Maufur, M.Pd.PendahuluMuhammad ZakirPenggantiIkmal Jaya Informasi pribadiLahir(1950-12-11)11 Desember 1950Panggang, Jepara, Jepara, Jawa TengahMeninggal8 September 2023(2023-09-08) (umur 72)Surabaya, Jawa TimurAlma materAkademi Angkatan Laut (1974)Karier militerPihak IndonesiaD...
Amusement park in Rovaniemi, Finland You can help expand this article with text translated from the corresponding article in Finnish. (January 2017) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not transla...
Genus of palms Andean wax palms Ceroxylon quindiuense Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Arecales Family: Arecaceae Subfamily: Ceroxyloideae Tribe: Ceroxyleae Genus: CeroxylonBonpl. ex DC. Type species Ceroxylon alpinum Synonyms[1] Klopstockia H.Karst. Beethovenia Engel Ceroxylon is a genus of flowering plants in the family Arecaceae, native to the Andes in Venezuela, Colombia, Ecuador, Peru, and...
Han Seung-soo한승수韓昇洙Perdana Menteri Korea SelatanMasa jabatan29 Februari 2008 – 29 September 2009PendahuluHan Duck-sooPenggantiBelum ada Informasi pribadiPartai politikGNPPekerjaanPolitikusSunting kotak info • L • B Han Seung-sooHangul한승수 Hanja韓昇洙 Alih AksaraHan Seung-suMcCune–ReischauerHan Sŭng-su Dr. Han Seung-soo (lahir 28 Desember 1936 di Gangwon) adalah politisi dan diplomat Korea Selatan. Ia menjabat sebagai Perdana Menteri Korea Selata...
هذه المقالة عن عروة بن الورد. لمعانٍ أخرى، طالع ورد (توضيح). عروة بن الورد الممثل مهيار خضور يجسد دور عروة بن الورد في مسلسل عنترة[1] معلومات شخصية اسم الولادة عروة بن الورد العبسي الميلاد سنة 540 الجزيرة العربية الوفاة سنة 607 (66–67 سنة) الجزيرة العربية الإقام...
Ministry of Agriculture and ForestryFinnish: maa- ja metsätalousministeriöSwedish: jord- och skogsbruksministerietMinistry overviewJurisdictionFinnish GovernmentHeadquartersHallituskatu 3 AHelsinkiEmployees250[1]Annual budget€2.752 billion (2022)Minister responsibleSari Essayah, Minister of Agriculture and ForestryMinistry executiveJaana Husu-KallioWebsitemmm.fi Politics of Finland State Constitution Declaration of Independence Human rights Law enforcement Military Executive Presi...