You can help expand this article with text translated from the corresponding article in German. (March 2024) Click [show] for important translation instructions.
View a machine-translated version of the German article.
Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.
Consider adding a topic to this template: there are already 2,022 articles in the main category, and specifying|topic= will aid in categorization.
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing German Wikipedia article at [[:de:L-Funktion]]; see its history for attribution.
You may also add the template {{Translated|de|L-Funktion}} to the talk page.
The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory. In it, broad generalisations of the Riemann zeta function and the L-series for a Dirichlet character are constructed, and their general properties, in most cases still out of reach of proof, are set out in a systematic way. Because of the Euler product formula there is a deep connection between L-functions and the theory of prime numbers.
The mathematical field that studies L-functions is sometimes called analytic theory of L-functions.
Construction
We distinguish at the outset between the L-series, an infinite series representation (for example the Dirichlet series for the Riemann zeta function), and the L-function, the function in the complex plane that is its analytic continuation. The general constructions start with an L-series, defined first as a Dirichlet series, and then by an expansion as an Euler product indexed by prime numbers. Estimates are required to prove that this converges in some right half-plane of the complex numbers. Then one asks whether the function so defined can be analytically continued to the rest of the complex plane (perhaps with some poles).
It is this (conjectural) meromorphic continuation to the complex plane which is called an L-function. In the classical cases, already, one knows that useful information is contained in the values and behaviour of the L-function at points where the series representation does not converge. The general term L-function here includes many known types of zeta functions. The Selberg class is an attempt to capture the core properties of L-functions in a set of axioms, thus encouraging the study of the properties of the class rather than of individual functions.
Conjectural information
One can list characteristics of known examples of L-functions that one would wish to see generalized:
interesting values at integers related to quantities from algebraic K-theory.
Detailed work has produced a large body of plausible conjectures, for example about the exact type of functional equation that should apply. Since the Riemann zeta function connects through its values at positive even integers (and negative odd integers) to the Bernoulli numbers, one looks for an appropriate generalisation of that phenomenon. In that case results have been obtained for p-adic L-functions, which describe certain Galois modules.
The statistics of the zero distributions are of interest because of their connection to problems like the generalized Riemann hypothesis, distribution of prime numbers, etc. The connections with random matrix theory and quantum chaos are also of interest. The fractal structure of the distributions has been studied using rescaled range analysis.[2] The self-similarity of the zero distribution is quite remarkable, and is characterized by a large fractal dimension of 1.9. This rather large fractal dimension is found over zeros covering at least fifteen orders of magnitude for the Riemann zeta function, and also for the zeros of other L-functions of different orders and conductors.
One of the influential examples, both for the history of the more general L-functions and as a still-open research problem, is the conjecture developed by Bryan Birch and Peter Swinnerton-Dyer in the early part of the 1960s. It applies to an elliptic curveE, and the problem it attempts to solve is the prediction of the rank of the elliptic curve over the rational numbers (or another global field): i.e. the number of free generators of its group of rational points. Much previous work in the area began to be unified around a better knowledge of L-functions. This was something like a paradigm example of the nascent theory of L-functions.
Gradually it became clearer in what sense the construction of Hasse–Weil zeta functions might be made to work to provide valid L-functions, in the analytic sense: there should be some input from analysis, which meant automorphic analysis. The general case now unifies at a conceptual level a number of different research programs.