Euler product

In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function.

Definition

In general, if a is a bounded multiplicative function, then the Dirichlet series

is equal to

where the product is taken over prime numbers p, and P(p, s) is the sum

In fact, if we consider these as formal generating functions, the existence of such a formal Euler product expansion is a necessary and sufficient condition that a(n) be multiplicative: this says exactly that a(n) is the product of the a(pk) whenever n factors as the product of the powers pk of distinct primes p.

An important special case is that in which a(n) is totally multiplicative, so that P(p, s) is a geometric series. Then

as is the case for the Riemann zeta function, where a(n) = 1, and more generally for Dirichlet characters.

Convergence

In practice all the important cases are such that the infinite series and infinite product expansions are absolutely convergent in some region

that is, in some right half-plane in the complex numbers. This already gives some information, since the infinite product, to converge, must give a non-zero value; hence the function given by the infinite series is not zero in such a half-plane.

In the theory of modular forms it is typical to have Euler products with quadratic polynomials in the denominator here. The general Langlands philosophy includes a comparable explanation of the connection of polynomials of degree m, and the representation theory for GLm.

Examples

The following examples will use the notation for the set of all primes, that is:

The Euler product attached to the Riemann zeta function ζ(s), also using the sum of the geometric series, is

while for the Liouville function λ(n) = (−1)ω(n), it is

Using their reciprocals, two Euler products for the Möbius function μ(n) are

and

Taking the ratio of these two gives

Since for even values of s the Riemann zeta function ζ(s) has an analytic expression in terms of a rational multiple of πs, then for even exponents, this infinite product evaluates to a rational number. For example, since ζ(2) = π2/6, ζ(4) = π4/90, and ζ(8) = π8/9450, then

and so on, with the first result known by Ramanujan. This family of infinite products is also equivalent to

where ω(n) counts the number of distinct prime factors of n, and 2ω(n) is the number of square-free divisors.

If χ(n) is a Dirichlet character of conductor N, so that χ is totally multiplicative and χ(n) only depends on n mod N, and χ(n) = 0 if n is not coprime to N, then

Here it is convenient to omit the primes p dividing the conductor N from the product. In his notebooks, Ramanujan generalized the Euler product for the zeta function as

for s > 1 where Lis(x) is the polylogarithm. For x = 1 the product above is just 1/ζ(s).

Notable constants

Many well known constants have Euler product expansions.

The Leibniz formula for π

can be interpreted as a Dirichlet series using the (unique) Dirichlet character modulo 4, and converted to an Euler product of superparticular ratios (fractions where numerator and denominator differ by 1):

where each numerator is a prime number and each denominator is the nearest multiple of 4.[1]

Other Euler products for known constants include:

and its reciprocal OEISA065489:

Notes

  1. ^ Debnath, Lokenath (2010), The Legacy of Leonhard Euler: A Tricentennial Tribute, World Scientific, p. 214, ISBN 9781848165267.

References

  • G. Polya, Induction and Analogy in Mathematics Volume 1 Princeton University Press (1954) L.C. Card 53-6388 (A very accessible English translation of Euler's memoir regarding this "Most Extraordinary Law of the Numbers" appears starting on page 91)
  • Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 (Provides an introductory discussion of the Euler product in the context of classical number theory.)
  • G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed., Oxford (1979) ISBN 0-19-853171-0 (Chapter 17 gives further examples.)
  • George E. Andrews, Bruce C. Berndt, Ramanujan's Lost Notebook: Part I, Springer (2005), ISBN 0-387-25529-X
  • G. Niklasch, Some number theoretical constants: 1000-digit values"

Read other articles:

الجامعة البابوية الكاثوليكية في الأرجنتين   معلومات التأسيس 1958  الموقع الجغرافي إحداثيات 34°35′37″S 58°30′35″W / 34.5935°S 58.50986111°W / -34.5935; -58.50986111  البلد الأرجنتين  إحصاءات عدد الموظفين 2007   الموقع الموقع الرسمي  تعديل مصدري - تعديل   34°35′37″S 58°30′35″W&#x...

 

Subsidiary of The Walt Disney Company The Muppets Studio, LLCFormerlyThe Muppets Holding Company (2004–2007)TypeSubsidiaryIndustryEntertainmentFoundedFebruary 14, 2004; 19 years ago (2004-02-14)HeadquartersLos Angeles, California, United StatesKey peopleLeigh Slaughter (vice president)[1]Products Film Television series Brands The Muppets Bear in the Big Blue House OwnerThe Walt Disney CompanyNumber of employees5 (2015)[2]ParentDisney Live Entertainment (2019

 

'Molshoop' met waterwinput bij de Soestwetering in Salland Oevergrondwater is oppervlaktewater dat via meren, rivieren en andere waterlopen in de bodem infiltreert. Als de infiltratie door waterwinning in stand wordt gehouden en oppervlaktewater van elders wordt aangevoerd, spreekt men van kunstmatige infiltratie. De infiltratie vult dan het door waterwinning ontstane grondwatertekort aan en zorgt voor een eerste reiniging van het oppervlaktewater. In het landschap zijn dan in de buurt van de...

 

NGC 660 menampilkan struktur dari galaksi cincin. Galaksi cincin kutub adalah jenis galaksi di mana sebuah cincin yang berisi gas luar dan bintang-bintangnya berputar di atas kutub galaksi.[1] Cincin kutub ini diperkirakan terbentuk ketika dua galaksi berinteraksi secara gravitasi satu sama lain. Salah satu kemungkinannya adalah bahwa suatu material dilepaskan secara pasang surut dari galaksi yang lewat dan nembentuk cincin kutub yang terlihat di galaksi cincin kutub. Kemungkinan lain...

 

50°53′33″N 5°38′59″E / 50.8925°N 5.6497°E / 50.8925; 5.6497 لناكن    علم شعار   الإحداثيات 50°53′33″N 5°38′59″E / 50.8925°N 5.6497°E / 50.8925; 5.6497  [1] تقسيم إداري  البلد بلجيكا[2][3]  خصائص جغرافية  المساحة 59.00 كيلومتر مربع  عدد السكان  عدد السكان 25818...

 

У Вікіпедії є статті про інші географічні об’єкти з назвою Жан Расін. Селище Расінангл. Racine Координати 38°58′09″ пн. ш. 81°54′55″ зх. д. / 38.969400000027775377° пн. ш. 81.91530000002778422° зх. д. / 38.969400000027775377; -81.91530000002778422Координати: 38°58′09″ пн. ш. 81°54′55″ з...

 

Едуардо Каманьйо ісп. Eduardo Camaño Едуардо КаманьйоМіністр уряду провінції Буенос-Айрес 20 березня 2009 — 10 грудня 2011Президент Аргентини (тимчасовий) 30 грудня 2001 — 2 січня 2002Попередник Адольфо Родрігес СааНаступник Едуардо ДуальдеСпікер Палати депутатів аргентинс�...

 

Dieser Artikel beschreibt das Kloster Zinna. Zum gleichnamigen Ortsteil der Stadt Jüterbog siehe Kloster Zinna (Jüterbog). Zisterzienserabtei Zinna Kloster Zinna im 19. Jahrhundert Lage Deutschland Deutschland Brandenburg Landkreis Teltow-Fläming Koordinaten: 52° 1′ 21″ N, 13° 6′ 14″ O52.022513.103888888889Koordinaten: 52° 1′ 21″ N, 13° 6′ 14″ O Ordnungsnummernach Janauschek 418 Gründungsjahr 1170 Ja...

 

Borscht dengan smetana Borsch (Ukraina: Борщ) adalah sebuah sup sayuran dari masakan Ukraina, umum di Eropa Timur. Makanan ini umumnya berbahan baku ubi bit merah dengan tambahan pasta tomat, daging, sayuran, dan sebagainya sesuai selera.[1][2][3] Berbagai varian Borsch tidak menggunakan ubi bit merah, seperti borsch hijau (berbahan baku sorrel) dan borsch putih (berbahan dasar gandum hitam). Etimologi Semangkuk borsch kental ala Rusia Nama borsch berasal dari kata...

 

American sitcom television series (1977–1981) For the general category of show, see Soap opera. SoapGenreSitcomCreated bySusan Harris[1]Starring Jimmy Baio Rebecca Balding Roscoe Lee Browne John Byner Diana Canova Billy Crystal Cathryn Damon Nancy Dolman Robert Guillaume Katherine Helmond Jay Johnson Gordon Jump Robert Mandan Dinah Manoff Caroline McWilliams Allan Miller Lynne Moody Richard Mulligan Marla Pennington Arthur Peterson Barbara Rhoades Donnelly Rhodes Eugene Roche Jennif...

 

Dam in North Dakota, northwest of MinotLake Darling DamReleasing flow of 22,000 cu ft/s (620 m3/s)on June 27 during 2011 Souris River flood.Location in the United StatesShow map of the United StatesLocation in North DakotaShow map of North DakotaCountryUnited StatesLocationWard County, North Dakota,northwest of MinotCoordinates48°27′27″N 101°35′00″W / 48.45750°N 101.58333°W / 48.45750; -101.58333StatusOperationalOpening date1936;...

 

Municipality in Southern, BrazilTibagiMunicipality FlagSealCountry BrazilRegionSouthernStateParanáMesoregionCentro Oriental ParanaensePopulation (2020 [1]) • Total20,607Time zoneUTC -3 Tibagi is a municipality in the state of Paraná in the Southern Region of Brazil.[2][3][4][5] Second largest municipality of Paraná in land, Tibagi expands over an area of over 200 square kilometres (77 sq mi). With the vast territory, i...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Isny im Allgäu – news · newspapers · books · scholar · JSTOR (September 2020) (Learn how and when to remove this template message) You can help expand this article with text translated from the corresponding article in German. (March 2011) Click [show] fo...

 

Legislative district of the Philippines Politics of the Philippines Government Constitution of the Philippines Charter Change Laws Legal codes Taxation Executive President of the Philippines Bongbong Marcos (PFP) Vice President of the Philippines Sara Duterte (HNP) Cabinet (lists) Executive departments Local government Legislature Congress of the Philippines 19th Congress Senate President Migz Zubiri (Independent) House of Representatives Speaker Martin Romualdez (Lakas) Districts Party-list ...

 

2012 Indian film The HitlistTheatrical release posterDirected byBalaScreenplay byBalaProduced byBalaStarringBalaDhruv SharmaAishwarya DevanNarrated byMohanlalCinematographyMadhu NeelakandanEdited bySamjith MohammedMusic byAlphons JosephProductioncompanyArunachalam PicturesDistributed byCelebs & Red CarpetRelease date 7 December 2012 (2012-12-07) Running time134 minutesCountryIndiaLanguageMalayalam The Hitlist is a 2012 Indian Malayalam-language action thriller film written,...

 

Gnathonemus petersii memiliki rasio konsumsi otak terhadap oksigen tertinggi pada vetebrataAcanthonus armatus memiliki rasio massa otak terhadap massa tubuh terkecil Kecerdasan ikan adalah ...hasil dari proses memperoleh, menyimpan dalam memori, mengambil, memadukan, membandingkan, dan menggunakan dalam konteks informasi dan keterampilan konseptual yang baru,[1] yang berlaku untuk ikan. Menurut Culum Brown dari Macquarie University, ikan-Ikan lebih cerdas daripada kelihatannya. Di ban...

 

Rodeo team event A wild cow milking team Wild cow milking is a rodeo event seen at mainstream and ranch rodeos. A team-based competition, the goal is to catch and milk a wild cow (a semi-feral animal that is not used to being milked by people, usually of a beef cattle breed) in as short a time as possible.[1] The competition dates back at least to the early 20th century, with competitions at the Cheyenne Frontier Days rodeo photographed as far back as 1924.[2] Rules Some compe...

 

Miliband pada 2010 David Wright Miliband PC (lahir 15 Juli 1965) adalah seorang analis kebijakan masyarakat Britania Raya yang menjadi presiden dan kepala jabatan eksekutif International Rescue Committee. Sebagai mantan politikus Partai Buruh Britania Raya,[1] ia menjadi Menteri Urusan Luar Negeri dan Persemakmuran dari 2007 sampai 2010[2] Daftar pustaka Gutch, Richard; Miliband, David; Percival, Richard (1989). Publish and still not be damned: a guide for voluntary groups on ...

 

Family of true bug CydnidaeTemporal range: Aptian–Present PreꞒ Ꞓ O S D C P T J K Pg N [1] Cydnus aterrimus Type genus for the family Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hemiptera Suborder: Heteroptera Superfamily: Pentatomoidea Family: CydnidaeBillberg, 1820 Cydnidae are a family of pentatomoid bugs, known by common names including burrowing bugs or burrower bugs.[2] As the common name would suggest, many...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sukhothai Historical Park – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this template message) UNESCO World Heritage Site Sukhothai Historical ParkUNESCO World Heritage SiteBuddha statue at Wat Si ChumLocationSukhot...