Selberg class

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in (Selberg 1992), who preferred not to use the word "axiom" that later authors have employed.[1]

Definition

The formal definition of the class S is the set of all Dirichlet series

absolutely convergent for Re(s) > 1 that satisfy four axioms (or assumptions as Selberg calls them):

  1. Analyticity: has a meromorphic continuation to the entire complex plane, with the only possible pole (if any) when s equals 1.
  2. Ramanujan conjecture: a1 = 1 and for any ε > 0;
  3. Functional equation: there is a gamma factor of the form

    where Q is real and positive, Γ the gamma function, the ωi real and positive, and the μi complex with non-negative real part, as well as a so-called root number

    ,

    such that the function

    satisfies

  4. Euler product: For Re(s) > 1, F(s) can be written as a product over primes:

    with

    and, for some θ < 1/2,

Comments on definition

The condition that the real part of μi be non-negative is because there are known L-functions that do not satisfy the Riemann hypothesis when μi is negative. Specifically, there are Maass forms associated with exceptional eigenvalues, for which the Ramanujan–Peterssen conjecture holds, and have a functional equation, but do not satisfy the Riemann hypothesis.

The condition that θ < 1/2 is important, as the θ = 1 case includes whose zeros are not on the critical line.

Without the condition there would be which violates the Riemann hypothesis.

It is a consequence of 4. that the an are multiplicative and that

Examples

The prototypical example of an element in S is the Riemann zeta function.[2] Another example, is the L-function of the modular discriminant Δ

where and τ(n) is the Ramanujan tau function.[3]

All known examples are automorphic L-functions, and the reciprocals of Fp(s) are polynomials in ps of bounded degree.[4]

The best results on the structure of the Selberg class are due to Kaczorowski and Perelli, who show that the Dirichlet L-functions (including the Riemann zeta-function) are the only examples with degree less than 2.[5]

Basic properties

As with the Riemann zeta function, an element F of S has trivial zeroes that arise from the poles of the gamma factor γ(s). The other zeroes are referred to as the non-trivial zeroes of F. These will all be located in some strip 1 − A ≤ Re(s) ≤ A. Denoting the number of non-trivial zeroes of F with 0 ≤ Im(s) ≤ T by NF(T),[6] Selberg showed that

Here, dF is called the degree (or dimension) of F. It is given by[7]

It can be shown that F = 1 is the only function in S whose degree is less than 1.

If F and G are in the Selberg class, then so is their product and

A function F ≠ 1 in S is called primitive if whenever it is written as F = F1F2, with Fi in S, then F = F1 or F = F2. If dF = 1, then F is primitive. Every function F ≠ 1 of S can be written as a product of primitive functions. Selberg's conjectures, described below, imply that the factorization into primitive functions is unique.

Examples of primitive functions include the Riemann zeta function and Dirichlet L-functions of primitive Dirichlet characters. Assuming conjectures 1 and 2 below, L-functions of irreducible cuspidal automorphic representations that satisfy the Ramanujan conjecture are primitive.[8]

Selberg's conjectures

In (Selberg 1992), Selberg made conjectures concerning the functions in S:

  • Conjecture 1: For all F in S, there is an integer nF such that and nF = 1 whenever F is primitive.
  • Conjecture 2: For distinct primitive FF′ ∈ S,
  • Conjecture 3: If F is in S with primitive factorization χ is a primitive Dirichlet character, and the function is also in S, then the functions Fiχ are primitive elements of S (and consequently, they form the primitive factorization of Fχ).
  • Riemann hypothesis for S: For all F in S, the non-trivial zeroes of F all lie on the line Re(s) = 1/2.

Consequences of the conjectures

Conjectures 1 and 2 imply that if F has a pole of order m at s = 1, then F(s)/ζ(s)m is entire. In particular, they imply Dedekind's conjecture.[9]

M. Ram Murty showed in (Murty 1994) that conjectures 1 and 2 imply the Artin conjecture. In fact, Murty showed that Artin L-functions corresponding to irreducible representations of the Galois group of a solvable extension of the rationals are automorphic as predicted by the Langlands conjectures.[10]

The functions in S also satisfy an analogue of the prime number theorem: F(s) has no zeroes on the line Re(s) = 1. As mentioned above, conjectures 1 and 2 imply the unique factorization of functions in S into primitive functions. Another consequence is that the primitivity of F is equivalent to nF = 1.[11]

See also

Notes

  1. ^ The title of Selberg's paper is somewhat a spoof on Paul Erdős, who had many papers named (approximately) "(Some) Old and new problems and results about...". Indeed, the 1989 Amalfi conference was quite surprising in that both Selberg and Erdős were present, with the story being that Selberg did not know that Erdős was to attend.
  2. ^ Murty 2008
  3. ^ Murty 2008
  4. ^ Murty 1994
  5. ^ Jerzy Kaczorowski & Alberto Perelli (2011). "On the structure of the Selberg class, VII" (PDF). Annals of Mathematics. 173: 1397–1441. doi:10.4007/annals.2011.173.3.4.
  6. ^ The zeroes on the boundary are counted with half-multiplicity.
  7. ^ While the ωi are not uniquely defined by F, Selberg's result shows that their sum is well-defined.
  8. ^ Murty 1994, Lemma 4.2
  9. ^ A celebrated conjecture of Dedekind asserts that for any finite algebraic extension of , the zeta function is divisible by the Riemann zeta function . That is, the quotient is entire. More generally, Dedekind conjectures that if is a finite extension of , then should be entire. This conjecture is still open.
  10. ^ Murty 1994, Theorem 4.3
  11. ^ Conrey & Ghosh 1993, § 4

References

Read other articles:

Вузька бухта 45°31′09″ пн. ш. 32°42′10″ сх. д. / 45.51917° пн. ш. 32.70278° сх. д. / 45.51917; 32.70278Координати: 45°31′09″ пн. ш. 32°42′10″ сх. д. / 45.51917° пн. ш. 32.70278° сх. д. / 45.51917; 32.70278Море Чорне море, Каркінітська затокаПрибережні кра�...

 

Psalter van Germain van Parijs Bewaarlocatie Bibliothèque nationale de France, Ms. Latin 11947 Datum van ontstaan 6e eeuw Type Psalter Kenmerken Omvang 291 folia Materiaal perkament Taal Latijn Schrift Unciaal Portaal    Literatuur Psalter van Germain van Parijs, f101v Het Psalter van Germain van Parijs is een van de oudste psalters die bewaard zijn gebleven. Het werd gemaakt tussen 500 en 576 en kreeg zijn naam naar de Heilige Germain van Parijs die geboren werd omstreeks 496, in ...

 

إن حيادية وصحة هذه المقالة محلُّ خلافٍ. ناقش هذه المسألة في صفحة نقاش المقالة، ولا تُزِل هذا القالب من غير توافقٍ على ذلك. (نقاش) جزء من سلسلة مقالات عنالشيعة الاثنا عشرية مفاهيم أساسيةأصول الدين التوحيد المعاد العدل النبوة الإمامة فروع الدين الصلاة الصوم الحج الزكاة الخُم...

 

Polish fencer Kazimierz BarburskiKazimierz Barburski in 2011Personal informationBorn(1942-08-07)7 August 1942Łódź, PolandDied26 May 2016(2016-05-26) (aged 73)Łódź, PolandSportSportFencing Medal record Men's fencing Representing  Poland Olympic Games 1968 Mexico City Épée, team Kazimierz Zygfryd Barburski (7 August 1942 – 26 May 2016)[1] was a Polish fencer. He won a bronze medal in the team épée event at the 1968 Summer Olympics.[2][3] Referen...

 

Para la ópera de Giacomo Puccini, véase Turandot. Turandot Turandot Cartel del estreno de Turandot y Arlecchino o las ventanas, de Busoni, el 11 de mayo de 1917.Género óperaActos 2 actosBasado en Turandotte (1762), obra teatral de Carlo GozziPublicaciónAño de publicación siglo XXIdioma alemánMúsicaCompositor Ferruccio BusoniPuesta en escenaLugar de estreno Teatro de la Ópera (Zúrich)Fecha de estreno 11 de mayo de 1917Personajes véase PersonajesLibretista el compositor[ed...

 

Russian footballer Aleksei Gubochkin Gubochkin with Tekstilshchik Ivanovo in 2021Personal informationFull name Aleksei Alekseyevich GubochkinDate of birth (1999-01-26) 26 January 1999 (age 24)Place of birth Moscow, RussiaHeight 1.91 m (6 ft 3 in)Position(s) DefenderTeam informationCurrent team FC TyumenNumber 95Youth career0000–2011 FC Torpedo Moscow2011–2013 FC Spartak Moscow2013–2014 TsSO Lokomotiv-2 Moscow2014–2017 FC Lokomotiv MoscowSenior career*Years Team App...

 

Swedish football manager (born 1962) Janne Andersson Andersson managing Sweden in 2019Personal informationFull name Jan Olof Andersson[1]Date of birth (1962-09-29) 29 September 1962 (age 61)[2]Place of birth Halmstad, Sweden[1]Position(s) Forward[3]Senior career*Years Team Apps (Gls)1979–1986 Alets IK 1987 IS Halmia 1988–1992 Alets IK 1993 Laholms FK Managerial career1988–1989 Alets IK (player manager)1990–1992 Halmstads BK (assistant manager)1993�...

 

Sociedad Internacional de Energía Solar Tipo organización no gubernamental y organización sin fines de lucroCampo energía renovable y energía solarFundación 1954Sede central Friburgo de Brisgovia (Alemania)Coordenadas 47°58′38″N 7°49′36″E / 47.9773, 7.82674Sitio web www.ises.org[editar datos en Wikidata] La Sociedad Internacional de Energía Solar (ISES, del inglés International Solar Energy Society) es una organización que promueve la educación en...

 

Recreio dos Bandeirantes Pontal is a small peninsula and beach area in the Recreio dos Bandeirantes (or simply Recreio) neighborhood, located in the West Zone of Rio de Janeiro, Brazil[1] and was a temporary venue in the Barra Olympic venues cluster for the Athletics (race walk) and Cycling (time trial) competitions of the 2016 Summer Olympics.[2][3] 2016 Summer Olympics The men's and women's Olympic cycling time trials were held August 10, 2016 on the 29.8 km (18...

 

Human settlement in EnglandPylleChurch of St Thomas à BecketPylleLocation within SomersetPopulation160 (2011)[1]OS grid referenceST605385DistrictMendipShire countySomersetRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townSHEPTON MALLETPostcode districtBA4Dialling code01749PoliceAvon and SomersetFireDevon and SomersetAmbulanceSouth Western UK ParliamentSomerton and Frome List of places UK England Somerset 51°08′39″N 2°33�...

 

أَبو الأَعْور الأَنصاري مخطوطة الاسم أبو الأعور الأنصاري معلومات شخصية الكنية أَبو الأَعْور العرق عربي الأولاد ليس له ذرية الأم أم نيار بنت إياس الحياة العملية النسب الخزرج مكانته صحابي الخدمة العسكرية المعارك والحروب شارك في غزوتي بدر وأحد تعديل مصدري - تعديل   أَبو ا�...

 

Species of mammal Chinese hamster A wild-type Chinese hamster Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Rodentia Family: Cricetidae Subfamily: Cricetinae Genus: Cricetulus Species: C. griseus Binomial name Cricetulus griseusMilne-Edwards, 1867 The Chinese hamster (Cricetulus griseus or Cricetulus barabensis griseus) is a rodent in the genus Cricetulus of the subfamily Cricetidae that originated in the deserts of northern China a...

 

For other uses, see comparator (disambiguation). A digital comparator or magnitude comparator is a hardware electronic device that takes two numbers as input in binary form and determines whether one number is greater than, less than or equal to the other number. Comparators are used in central processing units (CPUs) and microcontrollers (MCUs). Examples of digital comparator include the CMOS 4063 and 4585 and the TTL 7485 and 74682. An XNOR gate is a basic comparator, because its output is ...

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2017) (Learn how and when to remove this template message) Academy in Morecambe, Lancashire, EnglandMorecambe Bay AcademySchool building (2011)AddressDallam AvenueMorecambe, Lancashire, LA4 5BGEnglandCoordinates54°04′32″N 2°51′01″W / 54.0755°N 2.8503°W / 54.0755; -2.850...

 

Database of protein sequences and functional information Not to be confused with UniPro. UniProtContentDescriptionUniProt is the Universal Protein resource, a central repository of protein data created by combining the Swiss-Prot, TrEMBL and PIR-PSD databases.Data typescapturedProtein annotationOrganismsAllContactResearch centerEMBL-EBI, UK; SIB, Switzerland; PIR, US.Primary citationUniProt Consortium[1]AccessData formatCustom flat file, FASTA, GFF, RDF, XML.Websitewww.uniprot.orgwww....

 

Tommy HilfigerTommy Hilfiger pada tahun 2010LahirThomas Jacob Hilfiger24 Maret 1951 (umur 72)Elmira, New York, A.S.KebangsaanAmerika SerikatLabelTommy HilfigerSuami/istriSusie Hilfiger(m. 1980-2000)Dee Ocleppo(m. 2008-sekarang)AnakAlexandria (Ally)RichardElizabethKathleenSebastian Thomas Thomas Jacob Hilfiger (lahir 24 Maret 1951) [1] adalah seorang perancang busana Amerika Serikat dan pendiri merek produk gaya hidup premium Tommy Hilfiger Corporation. Awalnya dia hanya menjadi c...

 

Universitas Okmin PapuaJenisUniversitasDidirikan2021Lembaga indukKementerian Pendidikan dan Kebudayaan Republik IndonesiaRektorDr. Suryasastriya Trihandaru, M.Sc.natAlamatOksibil, Pegunungan Bintang, IndonesiaAfiliasiYayasan Pendidikan Okmin PapuaSitus webyapediopa.org Universitas Okmin Papua (disingkat UOP) adalah sebuah perguruan tinggi swasta di Kabupaten Pegunungan Bintang, Papua Pegunungan yang berdiri pada tahun 2021. Pegunungan Bintang adalah sebuah kabupaten terisolir di dekat perbata...

 

2023 film by Ramanan Purushothama Vasantha MullaiTheatrical release posterDirected byRamanan PurushothamaWritten byRamanan PurushothamaScreenplay byRamanan PurushothamaPonnivalavanProduced byRajani TalluriReshmi MenonStarringBobby SimhaKashmira PardeshiCinematographyGopi AmarnathEdited byVivek HarshanMusic byRajesh MurugesanRelease date 10 February 2023 (2023-02-10) CountryIndiaLanguageTamil Vasantha Mullai (transl. Spring jasmine) is a 2023 Indian Tamil-language psycholo...

 

Russian writer, illustrator and futurist (1877–1913) In this name that follows Eastern Slavic naming conventions, the patronymic is Genrikhovna and the family name is Guro. Elena GuroElena Guro c. 1900BornElena Genrikhovna Guro(1877-01-10)January 10, 1877Saint Petersburg, Imperial RussiaDiedMay 6, 1913(1913-05-06) (aged 36)Uusikirkko, FinlandKnown forThe Hurdy-GurdyAutumnal DreamFinlandMovementFuturism, Cubo-FuturismSpouse Mikhail Matyushin ​(m. 1906&#...

 

1937 film They Won't ForgetDirected byMervyn LeRoy (credited as A Mervyn LeRoy Production)Written byRobert RossenAben KandelBased onDeath in the Deep South1936 novelby Ward GreeneProduced byMervyn LeRoyJack L. WarnerStarringClaude RainsGloria DicksonEdward NorrisLana TurnerCinematographyArthur EdesonEdited byThomas RichardsMusic byAdolph DeutschProductioncompanyWarner Bros.Distributed byWarner Bros.Release dateJuly 14, 1937Running time95 minutesCountryUnited StatesLanguageEnglish They Won't F...