is called the q-expansion, or -expansion, of the positive real number x if, for all , , where is the floor function and need not be an integer. Any real number such that has such an expansion, as can be found using the greedy algorithm.
The special case of , , and or is sometimes called a -development. gives the only 2-development. However, for almost all , there are an infinite number of different -developments. Even more surprisingly though, there exist exceptional for which there exists only a single -development. Furthermore, there is a smallest number known as the Komornik–Loreti constant for which there exists a unique -development.[2]
Value
The Komornik–Loreti constant is the value such that
where is the Thue–Morse sequence, i.e., is the parity of the number of 1's in the binary representation of . It has approximate value
^Weissman, Eric W. "q-expansion" From Wolfram MathWorld. Retrieved on 2009-10-18.
^Weissman, Eric W. "Komornik–Loreti Constant." From Wolfram MathWorld. Retrieved on 2010-12-27.
^Allouche, Jean-Paul; Cosnard, Michel (2000), "The Komornik–Loreti constant is transcendental", American Mathematical Monthly, 107 (5): 448–449, doi:10.2307/2695302, JSTOR2695302, MR1763399
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!