Ranked pairs

Ranked Pairs (RP), also known as the Tideman method, is a tournament-style system of ranked voting first proposed by Nicolaus Tideman in 1987.[1][2]

If there is a candidate who is preferred over the other candidates, when compared in turn with each of the others, the ranked-pairs procedure guarantees that candidate will win. Therefore, the ranked-pairs procedure complies with the Condorcet winner criterion (and as a result is considered to be a Condorcet method).[3]

Ranked pairs begins with a round-robin tournament, where the one-on-one margins of victory for each possible pair of candidates are compared to find a majority-preferred candidate; if such a candidate exists, they are immediately elected. Otherwise, if there is a Condorcet cycle—a rock-paper-scissors-like sequence A > B > C > A—the cycle is broken by dropping the "weakest" elections in the cycle, i.e. the ones that are closest to being tied.[4]

Procedure

The ranked pairs procedure is as follows:

  1. Consider each pair of candidates round-robin style, and calculate the pairwise margin of victory for each in a one-on-one matchup.
  2. Sort the pairs by the (absolute) margin of victory, going from largest to smallest.
  3. Going down the list, check whether adding each matchup would create a cycle. If it would, cross out the election; this will be the election(s) in the cycle with the smallest margin of victory (near-ties).[note 1]

At the end of this procedure, all cycles will be eliminated, leaving a unique winner who wins all of the remaining one-on-one matchups. The lack of cycles means that candidates can be ranked directly based on the matchups that have been left behind.

Example

The situation

Tennessee and its four major cities: Memphis in the far west; Nashville in the center; Chattanooga in the east; and Knoxville in the far northeast

Suppose that Tennessee is holding an election on the location of its capital. The population is concentrated around four major cities. All voters want the capital to be as close to them as possible. The options are:

  • Memphis, the largest city, but far from the others (42% of voters)
  • Nashville, near the center of the state (26% of voters)
  • Chattanooga, somewhat east (15% of voters)
  • Knoxville, far to the northeast (17% of voters)

The preferences of each region's voters are:

42% of voters
Far-West
26% of voters
Center
15% of voters
Center-East
17% of voters
Far-East
  1. Memphis
  2. Nashville
  3. Chattanooga
  4. Knoxville
  1. Nashville
  2. Chattanooga
  3. Knoxville
  4. Memphis
  1. Chattanooga
  2. Knoxville
  3. Nashville
  4. Memphis
  1. Knoxville
  2. Chattanooga
  3. Nashville
  4. Memphis


The results are tabulated as follows:

Pairwise election results
A
B
Memphis Nashville Chattanooga Knoxville
Memphis [A] 58%

[B] 42%

[A] 58%

[B] 42%

[A] 58%

[B] 42%

Nashville [A] 42%

[B] 58%

[A] 32%

[B] 68%

[A] 32%

[B] 68%

Chattanooga [A] 42%

[B] 58%

[A] 68%

[B] 32%

[A] 17%

[B] 83%

Knoxville [A] 42%

[B] 58%

[A] 68%

[B] 32%

[A] 83%

[B] 17%

  • [A] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
  • [B] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption

Tally

First, list every pair, and determine the winner:

Pair Winner
Memphis (42%) vs. Nashville (58%) Nashville 58%
Memphis (42%) vs. Chattanooga (58%) Chattanooga 58%
Memphis (42%) vs. Knoxville (58%) Knoxville 58%
Nashville (68%) vs. Chattanooga (32%) Nashville 68%
Nashville (68%) vs. Knoxville (32%) Nashville 68%
Chattanooga (83%) vs. Knoxville (17%) Chattanooga 83%

The votes are then sorted. The largest majority is "Chattanooga over Knoxville"; 83% of the voters prefer Chattanooga. Thus, the pairs from above would be sorted this way:

Pair Winner
Chattanooga (83%) vs. Knoxville (17%) Chattanooga 83%
Nashville (68%) vs. Knoxville (32%) Nashville 68%
Nashville (68%) vs. Chattanooga (32%) Nashville 68%
Memphis (42%) vs. Nashville (58%) Nashville 58%
Memphis (42%) vs. Chattanooga (58%) Chattanooga 58%
Memphis (42%) vs. Knoxville (58%) Knoxville 58%

Lock

The pairs are then locked in order, skipping any pairs that would create a cycle:

  • Lock Chattanooga over Knoxville.
  • Lock Nashville over Knoxville.
  • Lock Nashville over Chattanooga.
  • Lock Nashville over Memphis.
  • Lock Chattanooga over Memphis.
  • Lock Knoxville over Memphis.

In this case, no cycles are created by any of the pairs, so every single one is locked in.

Every "lock in" would add another arrow to the graph showing the relationship between the candidates. Here is the final graph (where arrows point away from the winner).

In this example, Nashville is the winner using the ranked-pairs procedure. Nashville is followed by Chattanooga, Knoxville, and Memphis in second, third, and fourth places respectively.

Summary

In the example election, the winner is Nashville. This would be true for any Condorcet method.

Under first-past-the-post and some other systems, Memphis would have won the election by having the most people, even though Nashville won every simulated pairwise election outright. Using instant-runoff voting in this example would result in Knoxville winning even though more people preferred Nashville over Knoxville.

Criteria

Of the formal voting criteria, the ranked pairs method passes the majority criterion, the monotonicity criterion, the Smith criterion (which implies the Condorcet criterion), the Condorcet loser criterion, and the independence of clones criterion. Ranked pairs fails the consistency criterion and the participation criterion. While ranked pairs is not fully independent of irrelevant alternatives, it still satisfies local independence of irrelevant alternatives and independence of Smith-dominated alternatives, meaning it is likely to roughly satisfy IIA "in practice."

Independence of irrelevant alternatives

Ranked pairs fails independence of irrelevant alternatives, like all other ranked voting systems. However, the method adheres to a less strict property, sometimes called independence of Smith-dominated alternatives (ISDA). It says that if one candidate (X) wins an election, and a new alternative (Y) is added, X will win the election if Y is not in the Smith set. ISDA implies the Condorcet criterion.

Comparison table

The following table compares ranked pairs with other single-winner election methods:

Comparison of single-winner voting systems
Criterion


Method
Majority winner Majority loser Mutual majority Condorcet winner[Tn 1] Condorcet loser Smith[Tn 1] Smith-IIA[Tn 1] IIA/LIIA[Tn 1] Clone­proof Mono­tone Participation Later-no-harm[Tn 1] Later-no-help[Tn 1] No favorite betrayal[Tn 1] Ballot

type

First-past-the-post voting Yes No No No No No No No No Yes Yes Yes Yes No Single mark
Anti-plurality No Yes No No No No No No No Yes Yes No No Yes Single mark
Two round system Yes Yes No No Yes No No No No No No Yes Yes No Single mark
Instant-runoff Yes Yes Yes No Yes No No No Yes No No Yes Yes No Ran­king
Coombs Yes Yes Yes No Yes No No No No No No No No Yes Ran­king
Nanson Yes Yes Yes Yes Yes Yes No No No No No No No No Ran­king
Baldwin Yes Yes Yes Yes Yes Yes No No No No No No No No Ran­king
Tideman alternative Yes Yes Yes Yes Yes Yes Yes No Yes No No No No No Ran­king
Minimax Yes No No Yes[Tn 2] No No No No No Yes No No[Tn 2] No No Ran­king
Copeland Yes Yes Yes Yes Yes Yes Yes No No Yes No No No No Ran­king
Black Yes Yes No Yes Yes No No No No Yes No No No No Ran­king
Kemeny–Young Yes Yes Yes Yes Yes Yes Yes LIIA Only No Yes No No No No Ran­king
Ranked pairs Yes Yes Yes Yes Yes Yes Yes LIIA Only Yes Yes No[Tn 3] No No No Ran­king
Schulze Yes Yes Yes Yes Yes Yes Yes No Yes Yes No[Tn 3] No No No Ran­king
Borda No Yes No No Yes No No No No Yes Yes No Yes No Ran­king
Bucklin Yes Yes Yes No No No No No No Yes No No Yes No Ran­king
Approval Yes No No No No No No Yes[Tn 4] Yes Yes Yes No Yes Yes Appr­ovals
Majority Judgement No No[Tn 5] No[Tn 6] No No No No Yes[Tn 4] Yes Yes No[Tn 3] No Yes Yes Scores
Score No No No No No No No Yes[Tn 4] Yes Yes Yes No Yes Yes Scores
STAR No Yes No No Yes No No No No Yes No No No No Scores
Random ballot[Tn 7] No No No No No No No Yes Yes Yes Yes Yes Yes Yes Single mark
Sortition[Tn 8] No No No No No No No Yes No Yes Yes Yes Yes Yes None
Table Notes
  1. ^ a b c d e f g Condorcet's criterion is incompatible with the consistency, participation, later-no-harm, later-no-help, and sincere favorite criteria.
  2. ^ a b A variant of Minimax that counts only pairwise opposition, not opposition minus support, fails the Condorcet criterion and meets later-no-harm.
  3. ^ a b c In Highest median, Ranked Pairs, and Schulze voting, there is always a regret-free, semi-honest ballot for any voter, holding all other ballots constant and assuming they know enough about how others will vote. Under such circumstances, there is always at least one way for a voter to participate without grading any less-preferred candidate above any more-preferred one.
  4. ^ a b c Approval voting, score voting, and majority judgment satisfy IIA if it is assumed that voters rate candidates independently using their own absolute scale. For this to hold, in some elections, some voters must use less than their full voting power despite having meaningful preferences among viable candidates.
  5. ^ Majority Judgment may elect a candidate uniquely least-preferred by over half of voters, but it never elects the candidate uniquely bottom-rated by over half of voters.
  6. ^ Majority Judgment fails the mutual majority criterion, but satisfies the criterion if the majority ranks the mutually favored set above a given absolute grade and all others below that grade.
  7. ^ A randomly chosen ballot determines winner. This and closely related methods are of mathematical interest and included here to demonstrate that even unreasonable methods can pass voting method criteria.
  8. ^ Where a winner is randomly chosen from the candidates, sortition is included to demonstrate that even non-voting methods can pass some criteria.



Notes

  1. ^ Rather than crossing out near-ties, step 3 is sometimes described as going down the list and confirming ("locking in") the largest victories that do not create a cycle, then ignoring any victories that are not locked-in.

References

  1. ^ Tideman, T. N. (1987-09-01). "Independence of clones as a criterion for voting rules". Social Choice and Welfare. 4 (3): 185–206. doi:10.1007/BF00433944. ISSN 1432-217X. S2CID 122758840.
  2. ^ Schulze, Markus (October 2003). "A New Monotonic and Clone-Independent Single-Winner Election Method". Voting matters (www.votingmatters.org.uk). 17. McDougall Trust. Archived from the original on 2020-07-11. Retrieved 2021-02-02.
  3. ^ Munger, Charles T. (2022). "The best Condorcet-compatible election method: Ranked Pairs". Constitutional Political Economy. doi:10.1007/s10602-022-09382-w.
  4. ^ Munger, Charles T. (2022). "The best Condorcet-compatible election method: Ranked Pairs". Constitutional Political Economy. 34 (3): 434–444. doi:10.1007/s10602-022-09382-w.

Read other articles:

SanggrahanDesaKantor Desa SanggrahanNegara IndonesiaProvinsiJawa TengahKabupatenSukoharjoKecamatanGrogolKode pos57552Kode Kemendagri33.11.09.2011 Luas184,3535km²Jumlah penduduk8807 jiwaKepadatan29jiwa/km² Sanggrahan adalah desa di kecamatan Grogol, Sukoharjo, Jawa Tengah, Indonesia. Pembagian wilayah Desa Sanggrahan terdiri dari beberapa dukuh, antara lain: Dukuh Badongan Dukuh Badan Dukuh Dukuh Dukuh Sanggrahan Dukuh Mantung Dukuh Sidorejo Dukuh Ciptonegaran Dukuh Karang Dukuh Kaliwin...

 

Knight's Cross recipientsAllgradesGrand CrossGolden Oak Leaves, Swordsand DiamondsOak Leaves, Swords and DiamondsOak Leaves and SwordsOakLeaves 1940–41 1942 1943 1944 1945 Foreign Knight'sCross A Ba–Bm Bn–Bz C D E F G Ha–Hm Hn–Hz I J Ka–Km Kn–Kz L M N O P Q R Sa–Schr Schu–Sz T U V W X–Z Foreign  Knight's Cross The Knight's Cross of the Iron Cross (German: Ritterkreuz des Eisernen Kreuzes) and its variants were the highest awards in the military and paramilitary forces...

 

معركة حصن بورتوفيق إستسلام القائد الإسرائيلي لنقطة بورتوفيق الحصينة بعد الموقعة 1973 معلومات عامة التاريخ 6 أكتوبر، 1973 الموقع سيناء، مصر النتيجة انتصار مصري وأستيلائها علي النقطة - أستسلام القوة الإسرائيلية المتحاربون  مصر  إسرائيل القادة صلاح عبد الحليمعلي المزاحي جا

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Xenophon (Begriffsklärung) aufgeführt. Xenophon Sokrates (rechts) und möglicherweise Xenophon (links). Detail aus der Schule von Athen von Raffael, 1510–1511 Xenophon (altgriechisch Ξενοφῶν Xenophṓn; * zwischen 430 und 425 v. Chr. in Athen; † ca. 354 v. Chr. in Korinth[1]) war ein antiker griechischer Politiker, Feldherr und Schriftsteller in den Bereichen Geschichte, Ökonomie und Philosophie. E...

 

Parts of this article (those related to 20-plus years old population data) need to be updated. Please help update this article to reflect recent events or newly available information. (April 2021) This article is part of a series on thePolitics of Germany Constitution (Basic Law) Federal Constitutional Court Human rights Head of State President of Germany Frank-Walter Steinmeier (SPD) Executive Chancellor of Germany (list) Olaf Scholz (SPD) Vice Chancellor of Germany Robert Habeck (Grüne) Ca...

 

2000 first-person shooter video game This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Counter-Strike video game – news · newspapers · books · scholar ·...

Municipality of Montenegro Municipality in MontenegroNikšić Municipality Opština NikšićОпштина НикшићMunicipality Coat of armsNikšić Municipality in MontenegroCountryMontenegroSeatNikšićArea • Total2,065 km2 (797 sq mi)Population • Total72,443 • Density35/km2 (91/sq mi)Postal code81400Area code+382 40Car platesNKISO 3166-2 codeME-12Websitewww.niksic.me Nikšić Municipality (Montenegrin and Serbian: Opšti...

 

2017 sports competition 2017 Central American GamesHost cityManaguaCountryNicaraguaTeams7OpeningDecember 3, 2017 (2017-12-03)ClosingDecember 17, 2017 (2017-12-17)Opened byDaniel OrtegaMain venueDennis Martínez National StadiumWebsiteOfficial website← 2013 San Jose2022 Santa Tecla → The 2017 Central American Games, the XI edition of the Central American Games, were hosted in Managua, Nicaragua during 3–17 December 2017.[1] Sports &...

 

Single woman who owns many pet cats Crazy cat lady redirects here. For the Simpsons character, see List of recurring The Simpsons characters § Crazy Cat Lady. For the syndrome, see Crazy cat lady syndrome. For the video game, see The Cat Lady. Not to be confused with Catgirl or Catwoman. A woman feeding cats in Rome A cat lady is a cultural archetype or stock character, most often depicted as a white woman, a middle-aged or elderly spinster or widow, who has many cats. The term may be p...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2022) أرام هاكوبيان معلومات شخصية الميلاد 15 أغسطس 1979 (العمر 44 سنة)يريفان  الطول 1.75 م (5 قدم 9 بوصة) مركز اللعب مهاجم الجنسية أرمينيا  معلومات النادي الناد...

 

Japanese voice actress (1937–2021) Masako Sugaya菅谷政子Born(1937-08-21)August 21, 1937Tokyo, JapanDiedFebruary 25, 2021(2021-02-25) (aged 83)OccupationVoice actressAgentArts Vision Masako Sugaya (菅谷政子, Sugaya Masako) (August 21, 1937 – February 25, 2021) was a Japanese voice actress who has worked primarily in anime. She died on February 25, 2021.[1][2] Filmography Anime Television Perman (1967), Ganko[3] Under Sea Boy Marine (1969), Kurikuri Umeb...

 

Elections in Oregon Federal government Presidential elections 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 Presidential primaries Democratic 2000 2004 2008 2016 2020 2024 Republican 2008 2012 2016 2020 2024 U.S. Senate elections 1859 1860 sp 1862 sp 1864 1870 1872 1882 1885 1885 sp 1888 1890 1895 1898 1898 sp 1901 1903 1907 1907 s...

2022 psychological thriller film Nocebo (The Curse)Theatrical release posterDirected byLorcan FinneganWritten byGarret ShanleyProduced by Bianca Balbuena Brunella Cocchiglia Maxime Cottray Cloé Garbay David Gilbery Patti Lapus Emily Leo Bradley Liew Mary McCarthy Bastien Sirodot Marlon Vogelgesang Starring Eva Green Mark Strong Chai Fonacier Billie Gadsdon Cathy Belton Anthony Falcon Cinematography Jakub Kijowski Radek Ladczuk Edited byTony CranstounMusic byJose BuencaminoProductioncompanies...

 

Kampung Adat Praijing Kampung Adat Praijing adalah sebuah kampung yang terletak di Desa Tebara, Waikabubak, Kabupaten Sumba Barat, Provinsi Nusa Tenggara Timur.[1][2][3] Kampung ini terletak sekitar 3 km dari pusat Kota Waikabubak.[2] Kampung ini dikenal sebagai kampung wisata yang memiliki 38 rumah tradisional Sumba. Sebelumnya, di kampung ini terdapat 42 rumah tradisional, tetapi kini hanya 38 yang tersisa akibat terjadinya kebakaran pada tahun 2000.[...

 

2015 Chinese documentary film Taste of China味道中国Directed byHuang YinghaoZhang WeiWang BingJin YingProductioncompaniesDocuChina.Co.LtdSMG PicturesRelease date January 23, 2015 (2015-01-23) Running time86 minutesCountryChinaLanguageMandarinBox officeCN¥150,000 Taste of China (Chinese: 味道中国) is a 2015 Chinese documentary film directed by Huang Yinghao, Zhang Wei, Wang Bing and Jin Ying. It was released on January 23, 2015.[1] Cast Yang Zhenhua Chen Han...

American civil servant T. Coleman AndrewsCommissioner of Internal RevenueIn officeFebruary 4, 1953 – October 31, 1955PresidentDwight D. EisenhowerPreceded byJustin F. Winkle (acting)Succeeded byO. Gordon Delk (acting) Personal detailsBornThomas Coleman Andrews(1899-02-19)February 19, 1899Richmond, Virginia, USDiedOctober 15, 1983(1983-10-15) (aged 84)Richmond, Virginia, USPolitical partyRepublicanState's Rights Party Thomas Coleman Andrews (February 19, 1899 – October 15, 19...

 

Sri Lankan politician Hon.Champika PremadasaMPMember of Parliamentfor Kegalle DistrictIncumbentAssumed office 2000 Personal detailsBorn (1948-11-04) November 4, 1948 (age 75)NationalitySri LankanPolitical partyUnited National PartyResidence(s)55/6 Water Tank Road, Rambukkana Abathenna Devayalage Champika Premadasa (born November 4, 1948) is a Sri Lankan politician and a member of the Parliament of Sri Lanka. References A.D. CHAMPIKA PREMADASA. Directory of Members. Parliament of Sri ...

 

Untuk pengertian lain, lihat Scarsdale. Scarsdale adalah sebuah kota di Westchester County, New York, Amerika Serikat. Scarsdale berpenduduk 17.823 jiwa menurut sensus tahun 2000. Geografi Menurut United States Census Bureau (Biro Sensus Amerika Serikat), kota ini mencakup wiayah seluas 17,2 km². Lingkungan Edgewood Fox Meadow Greenacres Heathcote Quaker Ridge Lingkungan yang di luar desa Scarsdale namun masih memiliki kode ZIP 10583 (milik Scarsdale): Beech Hill (Kota Yonkers) Edgemont (Des...

Former Director of Business Development at Cambridge Analytica Brittany KaiserBrittany Kaiser in November 2019 during Web Summit 2019 in Lisbon, Portugal.BornBrittany Nicole Kaiser (1987-11-06) 6 November 1987 (age 36)[1][2]Houston, Texas, U.S. Brittany Nicole Kaiser (born November 6, 1987)[1][2] is the former business development director for Cambridge Analytica, which collapsed after details of its misuse of Facebook data became public. Cambridge Analyti...

 

1943 Italian filmA Little WifeDirected byGiorgio BianchiWritten byZoltán Nagyiványi (novel) Giorgio Bianchi Sandro De Feo Vincenzo TalaricoStarringFosco Giachetti Assia Noris Clara CalamaiCinematographyAldo TontiEdited byLeo CatozzoMusic bySalvatore AllegraProductioncompanyGrandi FilmDistributed byGrandi FilmRelease date22 December 1943Running time76 minutesCountryItalyLanguageItalian A Little Wife (Italian: Una piccola moglie) is a 1943 Italian white-telephones drama film directed by Giorg...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!