Pathological (mathematics)

The Weierstrass function is continuous everywhere but differentiable nowhere.

In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved or nice. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved.[1]

In analysis

A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere.[1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable.[2]

Such examples were deemed pathological when they were first discovered. To quote Henri Poincaré:[3]

Logic sometimes breeds monsters. For half a century there has been springing up a host of weird functions, which seem to strive to have as little resemblance as possible to honest functions that are of some use. No more continuity, or else continuity but no derivatives, etc. More than this, from the point of view of logic, it is these strange functions that are the most general; those that are met without being looked for no longer appear as more than a particular case, and they have only quite a little corner left them.

Formerly, when a new function was invented, it was in view of some practical end. To-day they are invented on purpose to show our ancestors' reasonings at fault, and we shall never get anything more than that out of them.

If logic were the teacher's only guide, he would have to begin with the most general, that is to say, with the most weird, functions. He would have to set the beginner to wrestle with this collection of monstrosities. If you don't do so, the logicians might say, you will only reach exactness by stages.

— Henri Poincaré, Science and Method (1899), (1914 translation), page 125

Since Poincaré, nowhere differentiable functions have been shown to appear in basic physical and biological processes such as Brownian motion and in applications such as the Black-Scholes model in finance.

Counterexamples in Analysis is a whole book of such counterexamples.[4]

Another example of pathological function is Du-Bois Reymond continuous function, that can't be represented as a Fourier series.[5]

In topology

One famous counterexample in topology is the Alexander horned sphere, showing that topologically embedding the sphere S2 in R3 may fail to separate the space cleanly. As a counterexample, it motivated mathematicians to define the tameness property, which suppresses the kind of wild behavior exhibited by the horned sphere, wild knot, and other similar examples.[6]

Like many other pathologies, the horned sphere in a sense plays on infinitely fine, recursively generated structure, which in the limit violates ordinary intuition. In this case, the topology of an ever-descending chain of interlocking loops of continuous pieces of the sphere in the limit fully reflects that of the common sphere, and one would expect the outside of it, after an embedding, to work the same. Yet it does not: it fails to be simply connected.

For the underlying theory, see Jordan–Schönflies theorem.

Counterexamples in Topology is a whole book of such counterexamples.[7]

Well-behaved

Mathematicians (and those in related sciences) very frequently speak of whether a mathematical object—a function, a set, a space of one sort or another—is "well-behaved". While the term has no fixed formal definition, it generally refers to the quality of satisfying a list of prevailing conditions, which might be dependent on context, mathematical interests, fashion, and taste. To ensure that an object is "well-behaved", mathematicians introduce further axioms to narrow down the domain of study. This has the benefit of making analysis easier, but produces a loss of generality of any conclusions reached.

In both pure and applied mathematics (e.g., optimization, numerical integration, mathematical physics), well-behaved also means not violating any assumptions needed to successfully apply whatever analysis is being discussed.

The opposite case is usually labeled "pathological". It is not unusual to have situations in which most cases (in terms of cardinality or measure) are pathological, but the pathological cases will not arise in practice—unless constructed deliberately.

The term "well-behaved" is generally applied in an absolute sense—either something is well-behaved or it is not. For example:

Unusually, the term could also be applied in a comparative sense:

Pathological examples

Pathological examples often have some undesirable or unusual properties that make it difficult to contain or explain within a theory. Such pathological behaviors often prompt new investigation and research, which leads to new theory and more general results. Some important historical examples of this are:

At the time of their discovery, each of these was considered highly pathological; today, each has been assimilated into modern mathematical theory. These examples prompt their observers to correct their beliefs or intuitions, and in some cases necessitate a reassessment of foundational definitions and concepts. Over the course of history, they have led to more correct, more precise, and more powerful mathematics. For example, the Dirichlet function is Lebesgue integrable, and convolution with test functions is used to approximate any locally integrable function by smooth functions.[Note 1]

Whether a behavior is pathological is by definition subject to personal intuition. Pathologies depend on context, training, and experience, and what is pathological to one researcher may very well be standard behavior to another.

Pathological examples can show the importance of the assumptions in a theorem. For example, in statistics, the Cauchy distribution does not satisfy the central limit theorem, even though its symmetric bell-shape appears similar to many distributions which do; it fails the requirement to have a mean and standard deviation which exist and that are finite.

Some of the best-known paradoxes, such as Banach–Tarski paradox and Hausdorff paradox, are based on the existence of non-measurable sets. Mathematicians, unless they take the minority position of denying the axiom of choice, are in general resigned to living with such sets.[citation needed]

Computer science

In computer science, pathological has a slightly different sense with regard to the study of algorithms. Here, an input (or set of inputs) is said to be pathological if it causes atypical behavior from the algorithm, such as a violation of its average case complexity, or even its correctness. For example, hash tables generally have pathological inputs: sets of keys that collide on hash values. Quicksort normally has time complexity, but deteriorates to when it is given input that triggers suboptimal behavior.

The term is often used pejoratively, as a way of dismissing such inputs as being specially designed to break a routine that is otherwise sound in practice (compare with Byzantine). On the other hand, awareness of pathological inputs is important, as they can be exploited to mount a denial-of-service attack on a computer system. Also, the term in this sense is a matter of subjective judgment as with its other senses. Given enough run time, a sufficiently large and diverse user community (or other factors), an input which may be dismissed as pathological could in fact occur (as seen in the first test flight of the Ariane 5).

Exceptions

A similar but distinct phenomenon is that of exceptional objects (and exceptional isomorphisms), which occurs when there are a "small" number of exceptions to a general pattern (such as a finite set of exceptions to an otherwise infinite rule). By contrast, in cases of pathology, often most or almost all instances of a phenomenon are pathological (e.g., almost all real numbers are irrational).

Subjectively, exceptional objects (such as the icosahedron or sporadic simple groups) are generally considered "beautiful", unexpected examples of a theory, while pathological phenomena are often considered "ugly", as the name implies. Accordingly, theories are usually expanded to include exceptional objects. For example, the exceptional Lie algebras are included in the theory of semisimple Lie algebras: the axioms are seen as good, the exceptional objects as unexpected but valid.

By contrast, pathological examples are instead taken to point out a shortcoming in the axioms, requiring stronger axioms to rule them out. For example, requiring tameness of an embedding of a sphere in the Schönflies problem. In general, one may study the more general theory, including the pathologies, which may provide its own simplifications (the real numbers have properties very different from the rationals, and likewise continuous maps have very different properties from smooth ones), but also the narrower theory, from which the original examples were drawn.

See also

References

  1. ^ a b c Weisstein, Eric W. "Pathological". mathworld.wolfram.com. Retrieved 2019-11-29.
  2. ^ "Baire Category & Nowhere Differentiable Functions (Part One)". www.math3ma.com. Retrieved 2019-11-29.
  3. ^ Kline, Morris (1990). Mathematical thought from ancient to modern times. Oxford University Press. p. 973. OCLC 1243569759.
  4. ^ Gelbaum, Bernard R. (1964). Counterexamples in analysis. John M. H. Olmsted. San Francisco: Holden-Day. ISBN 0-486-42875-3. OCLC 527671.
  5. ^ Jahnke, Hans Niels (2003). A history of analysis. History of mathematics. Providence (R.I.): American mathematical society. p. 187. ISBN 978-0-8218-2623-2.
  6. ^ Weisstein, Eric W. "Alexander's Horned Sphere". mathworld.wolfram.com. Retrieved 2019-11-29.
  7. ^ Steen, Lynn Arthur (1995). Counterexamples in topology. J. Arthur Seebach. New York: Dover Publications. ISBN 0-486-68735-X. OCLC 32311847.
  8. ^ Doron, Gideon; Kronick, Richard (1977). "Single Transferrable Vote: An Example of a Perverse Social Choice Function". American Journal of Political Science. 21 (2): 303–311. doi:10.2307/2110496. ISSN 0092-5853. JSTOR 2110496.

Notes

  1. ^ The approximations converge almost everywhere and in the space of locally integrable functions.

This article incorporates material from pathological on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

У Вікіпедії є статті про інших людей із прізвищем Назарова. Щодо інших людей з таким самим іменем та прізвищем див. Назарова Тетяна. Назарова Тетяна Євгенівна Файл:Назарова (театр).jpgІм'я при народженні Тетяна Євгенівна НазароваНародилася 29 листопада 1960(1960-11-29) (62 роки)Бердя

 

Der Flyer mit den beteiligten Künstlern Die Veranstaltung Die große Untergangs-Show – Festival Genialer Dilletanten fand am 4. September 1981 im Berliner Tempodrom-Zelt vor 1400 Zuschauern statt. Die gegenüber dem Duden falsche Schreibweise des Wortes „Dilettanten“ war ursprünglich ein Schreibfehler auf dem Flyer. Inhaltsverzeichnis 1 Veranstaltung 2 Fortwirkung 3 Dokumentation 4 Literatur 5 Einzelnachweise Veranstaltung Auf diesem Festival waren erstmals die aus dem Punk und Post-P...

 

إجمالي استهلاك الطاقة الأولية بالاتحاد الأوروبي في عام 2017[1]   نفط (38%)  فحم (14%)  غاز طبيعي (24%)  طاقة نووية (11%)  طاقة كهرومائية (4%)  طاقة متجددة (9%) جزء من سلسلة مقالات سياسة الاتحاد الأوروبيالاتحاد الأوروبي الدول الأعضاء (27) إسبانيا إستونيا إي...

Petzer ist eine Weiterleitung auf diesen Artikel. Weitere Bedeutungen sind unter Petzer (Begriffsklärung) aufgeführt. Pec pod Sněžkou Pec pod Sněžkou (Tschechien) Basisdaten Staat: Tschechien Tschechien Region: Královéhradecký kraj Bezirk: Trutnov Fläche: 5214 ha Geographische Lage: 50° 42′ N, 15° 44′ O50.69361111111115.733333333333769Koordinaten: 50° 41′ 37″ N, 15° 44′ 0″ O Höhe: 769 m n.m. Einwohner:...

 

Public research university in Waterloo, Ontario, Canada University of WaterlooSeal of the University of WaterlooFormer namesWaterloo College Associate Faculties (1956–1959)[1]MottoConcordia cum veritate (Latin)Motto in EnglishIn harmony with truthTypePublic research universityEstablished1959 (1959)[2][a]Academic affiliationsACU, CARL, COU, CUSID, Fields Institute, Universities Canada, U15EndowmentCA$492 million (2023)[3]ChancellorDominic Barton...

 

Annual Welsh-language youth festival Urdd National EisteddfodEisteddfod Genedlaethol yr UrddEntrance to Urdd Eisteddfod 2017StatusActiveGenreYouth, artsFrequencyAnnuallyCountryWalesEstablished1929; 94 years ago (1929)Participants15,000Attendance90,000WebsiteOfficial website Pronunciation of 'Eisteddfod Yr Urdd' Part of a series on theCulture of Wales History Timeline Bibliography Prehistory Roman Era Anglo-Welsh Wars Early Middle Ages Kingdom of Gwynedd Kingdom of Powys Dehe...

Опис Емблема ФК «Полісся» Джерело Житомирська міська рада Час створення 2018 Автор зображення ФК «Полісся» Ліцензія Це логотип (емблема) організації, товару, або заходу, що перебуває під захистом авторських прав та/або є товарним знаком. Використання зображень логотипів з...

 

NBC affiliate in Pocatello, Idaho Not to be confused with WPVI-TV. KPVI-DTPocatello–Idaho Falls, IdahoUnited StatesCityPocatello, IdahoChannelsDigital: 23 (UHF)Virtual: 6BrandingKPVIProgrammingAffiliations6.1: NBC6.2: Catchy Comedy6.3: Movies!OwnershipOwnerImagicomm Communications(Imagicomm Idaho Falls, LLC)HistoryFirst air dateApril 26, 1974 (49 years ago) (1974-04-26)Former call signsKPVI (1974–2009)Former channel number(s)Analog:6 (VHF, 1974–2009)Former affiliationsAnal...

 

County in Texas, United States County in TexasTarrant CountyCountyTarrant County Courthouse FlagSealLocation within the U.S. state of TexasTexas's location within the U.S.Coordinates: 32°46′N 97°17′W / 32.77°N 97.29°W / 32.77; -97.29Country United StatesState TexasFounded1850Named forEdward H. TarrantSeatFort WorthLargest cityFort WorthArea • Total902 sq mi (2,340 km2) • Land864 sq mi (2,240 km2)&#...

Orang Yunani Muda di Masjid (Jean-Léon Gérôme, 1865). Vallahades (bahasa Yunani: Βαλαχάδες) atau Valaades (Βαλαάδες) adalah orang-orang Muslim berbahasa Yunani yang pernah tinggal di wilayah sepanjang Sungai Haliacmon di Makedonia barat daya, Yunani, tepatnya di daerah Anaselitsa (kini Neapoli) dan Grevena. Mereka berjumlah sekitar 17.000 jiwa pada awal abad ke-20.[1] Mereka dianggap sebagai kelompok yang baru menjadi Muslim belakangan, karena komunitas Vallaha...

 

The Tagore Award is an award given in commemoration of the 150th birth anniversary of the Nobel laureate Rabindranath Tagore (1861–1941) for cultural harmony. Established in 2011 by Government of India, it is given for outstanding achievement in fostering harmony and universalism and values of cultural harmony especially in conflict or extreme situations through innovative systems/strategies and which have an enduring and transformational impact.[1] This award carries an amount of R...

 

Public research university in Thailand This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Thammasat Universityมหาวิทยา...

Бременська міська електричка Зазвичай використовуваний транспортний засіб NWB ET 440d Країна  Німеччина Адміністративна одиниця БременНижня Саксонія Дата офіційного відкриття 2010 Ширина колії європейська колія Довжина або відстань 270 км Електронна пошта mailto:dialog@nordwestb...

 

53°26′35″N 2°12′56″W / 53.44306°N 2.21556°W / 53.44306; -2.21556 Fallowfield Stadium was an athletics stadium and velodrome in Fallowfield, Manchester, England. It opened in May 1892 as the home of Manchester Athletics Club after it was forced to move from its home next to Old Trafford Cricket Ground.[1] Fallowfield was most regularly used for cycling by the Manchester Wheelers' Club, who held their annual competition there until 1976.[1] Du...

 

Prince of Ratchaburi Raphi PhatthanasakPrince of RatchaburiBorn(1874-10-21)21 October 1874Grand Palace, Bangkok, SiamDied7 August 1920(1920-08-07) (aged 45)Paris, FranceSpousePrincess Orabhatra PrabaiMom On Rabibadhana Na AyudhyaMom Duaeng RabibadhanaMom Rajawongse Sa-ang PramojIssue13 sons and daughtersNamesHis Royal HighnessPrince RabibadhanasakdiHouseRabhibhat family (Chakri Dynasty)FatherChulalongkorn (Rama V)MotherChao Chom Manda Talab Prince Raphi Phatthanasak, Prince of Ratchaburi...

Сварщик за работой Сва́рка — процесс получения неразъёмных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, пластическом деформировании или совместном действии того и другого[1]. Специалист, зан...

 

Town in Kansai, JapanKasagi 笠置町TownKasagi Town Hall FlagChapterLocation of Kasagi in Kyoto PrefectureKasagiLocation in JapanCoordinates: 34°45′38″N 135°56′22″E / 34.76056°N 135.93944°E / 34.76056; 135.93944CountryJapanRegionKansaiPrefectureKyotoDistrictSōrakuArea • Total23.52 km2 (9.08 sq mi)Population (September 1, 2023) • Total1,134 • Density48/km2 (120/sq mi)Time zoneUTC+09:00 (JST)City ...

 

العلاقات المجرية الدومينيكية المجر دومينيكا   المجر   دومينيكا تعديل مصدري - تعديل   العلاقات المجرية الدومينيكية هي العلاقات الثنائية التي تجمع بين المجر ودومينيكا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا...

Genus of flowering plants in the myrtle familyThis article is about the plant genus. For other uses, see Eucalyptus (disambiguation). EucalyptusTemporal range: Eocene–Recent PreꞒ Ꞓ O S D C P T J K Pg N Buds, capsules, flowers and foliage of E. tereticornis Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: Myrtaceae Subfamily: Myrtoideae Tribe: Eucalypteae Genus: EucalyptusL'Hér.[1] Type speci...

 

佐賀城佐賀城/さがじょう Saga-jō佐嘉城、榮城、沈城、龜甲城佐賀城鯱門类型城郭構造:輪郭梯郭複合式平城天守構造:4重位置 日本佐賀縣坐标33°14′44.69″N 130°18′7.65″E / 33.2457472°N 130.3021250°E / 33.2457472; 130.3021250建成时间1602年廢城時間1871年当前用途現存遺跡:鯱之門及續櫓、移築御座之間、石垣、堀文化財指定:國家重要文化財(鯱之門...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!