Fixed point (mathematics)

The function (shown in red) has the fixed points 0, 1, and 2.

In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.

Fixed point of a function

Formally, c is a fixed point of a function f if c belongs to both the domain and the codomain of f, and f(c) = c. In particular, f cannot have any fixed point if its domain is disjoint from its codomain. If f is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point c corresponds to an intersection of the curve with the line y = x, cf. picture.

For example, if f is defined on the real numbers by then 2 is a fixed point of f, because f(2) = 2.

Not all functions have fixed points: for example, f(x) = x + 1 has no fixed points because x + 1 is never equal to x for any real number.

Fixed point iteration

In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. Specifically, given a function with the same domain and codomain, a point in the domain of , the fixed-point iteration is

which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of .

The notions of attracting fixed points, repelling fixed points, and periodic points are defined with respect to fixed-point iteration.

Fixed-point theorems

A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition.[1]

For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.

The Brouwer fixed-point theorem (1911) says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, but it doesn't describe how to find the fixed point.

The Lefschetz fixed-point theorem (and the Nielsen fixed-point theorem) from algebraic topology give a way to count fixed points.

Fixed point of a group action

In algebra, for a group G acting on a set X with a group action , x in X is said to be a fixed point of g if .

The fixed-point subgroup of an automorphism f of a group G is the subgroup of G:

Similarly, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,

In Galois theory, the set of the fixed points of a set of field automorphisms is a field called the fixed field of the set of automorphisms.

Topological fixed point property

A topological space is said to have the fixed point property (FPP) if for any continuous function

there exists such that .

The FPP is a topological invariant, i.e., it is preserved by any homeomorphism. The FPP is also preserved by any retraction.

According to the Brouwer fixed-point theorem, every compact and convex subset of a Euclidean space has the FPP. Compactness alone does not imply the FPP, and convexity is not even a topological property, so it makes sense to ask how to topologically characterize the FPP. In 1932 Borsuk asked whether compactness together with contractibility could be a necessary and sufficient condition for the FPP to hold. The problem was open for 20 years until the conjecture was disproved by Kinoshita, who found an example of a compact contractible space without the FPP.[2]

Fixed points of partial orders

In domain theory, the notion and terminology of fixed points is generalized to a partial order. Let ≤ be a partial order over a set X and let f: XX be a function over X. Then a prefixed point (also spelled pre-fixed point, sometimes shortened to prefixpoint or pre-fixpoint)[citation needed] of f is any p such that f(p) ≤ p. Analogously, a postfixed point of f is any p such that pf(p).[3] The opposite usage occasionally appears.[4] Malkis justifies the definition presented here as follows: "since f is before the inequality sign in the term f(x) ≤ x, such x is called a prefix point."[5] A fixed point is a point that is both a prefixpoint and a postfixpoint. Prefixpoints and postfixpoints have applications in theoretical computer science.[6]

Least fixed point

In order theory, the least fixed point of a function from a partially ordered set (poset) to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique.

One way to express the Knaster–Tarski theorem is to say that a monotone function on a complete lattice has a least fixed point that coincides with its least prefixpoint (and similarly its greatest fixed point coincides with its greatest postfixpoint).[7]

Fixed-point combinator

In combinatory logic for computer science, a fixed-point combinator is a higher-order function that returns a fixed point of its argument function, if one exists. Formally, if the function f has one or more fixed points, then

Fixed-point logics

In mathematical logic, fixed-point logics are extensions of classical predicate logic that have been introduced to express recursion. Their development has been motivated by descriptive complexity theory and their relationship to database query languages, in particular to Datalog.

Applications

In many fields, equilibria or stability are fundamental concepts that can be described in terms of fixed points. Some examples follow.

See also

Notes

  1. ^ Brown, R. F., ed. (1988). Fixed Point Theory and Its Applications. American Mathematical Society. ISBN 0-8218-5080-6.
  2. ^ Kinoshita, Shin'ichi (1953). "On Some Contractible Continua without Fixed Point Property". Fund. Math. 40 (1): 96–98. doi:10.4064/fm-40-1-96-98. ISSN 0016-2736.
  3. ^ Smyth, Michael B.; Plotkin, Gordon D. (1982). "The Category-Theoretic Solution of Recursive Domain Equations" (PDF). Proceedings, 18th IEEE Symposium on Foundations of Computer Science. SIAM Journal of Computing (volume 11). pp. 761–783. doi:10.1137/0211062.
  4. ^ Patrick Cousot; Radhia Cousot (1979). "Constructive Versions of Tarski's Fixed Point Theorems" (PDF). Pacific Journal of Mathematics. 82 (1): 43–57. doi:10.2140/pjm.1979.82.43.
  5. ^ Malkis, Alexander (2015). "Multithreaded-Cartesian Abstract Interpretation of Multithreaded Recursive Programs Is Polynomial" (PDF). Reachability Problems. Lecture Notes in Computer Science. Vol. 9328. pp. 114–127. doi:10.1007/978-3-319-24537-9_11. ISBN 978-3-319-24536-2. S2CID 17640585. Archived from the original (PDF) on 2022-08-10.
  6. ^ Yde Venema (2008) Lectures on the Modal μ-calculus Archived March 21, 2012, at the Wayback Machine
  7. ^ Yde Venema (2008) Lectures on the Modal μ-calculus Archived March 21, 2012, at the Wayback Machine
  8. ^ Coxeter, H. S. M. (1942). Non-Euclidean Geometry. University of Toronto Press. p. 36.
  9. ^ G. B. Halsted (1906) Synthetic Projective Geometry, page 27
  10. ^ Wilson, Kenneth G. (1971). "Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture". Physical Review B. 4 (9): 3174–3183. Bibcode:1971PhRvB...4.3174W. doi:10.1103/PhysRevB.4.3174.
  11. ^ Wilson, Kenneth G. (1971). "Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior". Physical Review B. 4 (9): 3184–3205. Bibcode:1971PhRvB...4.3184W. doi:10.1103/PhysRevB.4.3184.
  12. ^ "P. Cousot & R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints".

Read other articles:

Công quốc Brittany Tên bản ngữ Dugelezh Breizh (tiếng Breton)Duché de Bretagne (tiếng Pháp) 939–1547 Top: Cờ công quốcBottom: Kroaz Du là lá cờ được sử dụng bởi công quốc độc lập thời Trung Cổ Quốc huy Tiêu ngữ: Kentoc'h mervel eget bezañ saotret (tiếng Breton)Potius mori quam fœdari (tiếng Latinh)Plutôt la mort que la souillure (tiếng Pháp)À ma vie (tiếng Pháp) (variant)Tổng ...

 

 

ThreeLogo Three mulai 2017Diluncurkan26 November 1989PemilikMediaWorks New ZealandSloganNo Place I'd Rather BeNegaraSelandia BaruTimeshiftTV3 plus 1Situs webwww.threenow.co.nz Logo kedua TV3 (2003-2017) Three (bergaya dengan +HR=E, sebelumnya bernama TV3) adalah saluran televisi komersial Selandia Baru, yang dimiliki oleh MediaWorks New Zealand. Diluncurkan pada tanggal 26 November 1989, sebagai jaringan televisi swasta pertama di Selandia Baru. Pranala luar Situs resmi (Inggris)

 

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 高砂市立荒井中学校 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2022年12月) 高砂市立荒井中学校 北緯34度45分59秒

Emgea Razão social Empresa Gestora de Ativos S.A. Tipo empresa de capital fechado Atividade Gestão de ativos Gênero empresa pública Fundação 26 de agosto de 2001 (22 anos) Sede Brasília,  Distrito Federal Proprietário(s) Governo Federal do Brasil (100%) Presidente Fernando Pimentel Website oficial https://www.emgea.gov.br/ EMGEA (Empresa Gestora de Ativos) é uma empresa pública brasileira, vinculada ao Ministério da Fazenda. A companhia tem como atividade a gestão de...

 

 

Місто Сан-Карлосісп. San Carlos Прапор Герб Координати 11°08′ пн. ш. 84°47′ зх. д.H G O Країна НікарагуаНікарагуаДепартамент Ріо-Сан-ХуанДата заснування 1526Площа 1445 км²Висота центру 27  мВодойма Нікарагуа, Río San JuandНаселення 15 157  (2013)Міста-побратими Лінц (1988)[1&...

 

 

Координати: 35°07′48″ пн. ш. 85°36′36″ зх. д. / 35.13000000002777767° пн. ш. 85.61000000002778165° зх. д. / 35.13000000002777767; -85.61000000002778165 Округ Меріон, Теннессі На мапі штату Теннессі Розташування штату Теннессі на мапі США Заснований 1817 Центр Джаспер Найбільше місто Джа...

2016 film by Michael Gallagher The ThinningPromotional posterDirected byMichael J. GallagherWritten by Michael Gallagher Steve Greene Produced by Michael J. Gallagher Jana Winternitz Michael Wormser Starring Logan Paul Peyton List Lia Marie Johnson Calum Worthy Matthew Glave Michael Traynor Stacey Dash CinematographyGreg CottenEdited byBrian UfbergMusic byBrandon CampbellProductioncompaniesLegendary Digital MediaCinemandKids at PlayDistributed byYouTube RedRelease date October 12, 2...

 

 

Lift kursi di Bad Hofgastein, Austria Lift kursi (bahasa Inggris: Chairlift) adalah sebuah sarana transportasi penumpang yang terdiri dari kabel baja yang memutari dua buah terminal. Sarana ini umum terdapat di lokasi ski, taman hiburan dan di berbagai lokasi wisata lainnya. Pranala luar Wikimedia Commons memiliki media mengenai Chairlift. Artikel bertopik transportasi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

 

Season of television series The VoiceSeason 3Promotional posterHosted byCarson DalyChristina Milian (social media)CoachesAdam LevineCeeLo GreenChristina AguileraBlake SheltonNo. of contestants64 artistsWinnerCassadee PopeWinning coachBlake SheltonRunner-upTerry McDermott ReleaseOriginal networkNBCOriginal releaseSeptember 10 (2012-09-10) –December 18, 2012 (2012-12-18)Season chronology← PreviousSeason 2Next →Season 4 The third season of the American reality tale...

1977 film by Robert Aldrich For similarly named articles, see Twilight's Last Gleaming (disambiguation). Twilight's Last GleamingDirected byRobert AldrichScreenplay byRonald M. CohenEdward HuebschBased onViper Three1971 novelby Walter WagerProduced byMerv AdelsonStarringBurt LancasterRoscoe Lee BrowneJoseph CottenMelvyn DouglasCharles DurningRichard JaeckelWilliam MarshallGerald S. O'LoughlinRichard WidmarkPaul WinfieldBurt YoungCinematographyRobert B. HauserEdited byMichael LucianoWilliam Ma...

 

 

Pedagogy emphasizing problem-solving mastery Singapore math (or Singapore maths in British English[1]) is a teaching method based on the national mathematics curriculum used for first through sixth grade in Singaporean schools.[2][3] The term was coined in the United States[4] to describe an approach originally developed in Singapore to teach students to learn and master fewer mathematical concepts at greater detail as well as having them learn these concepts u...

 

 

Filipino businessman Al PanlilioPanlilio in 2023BornAlfredo S. PanlilioNationalityFilipinoOccupationBusinessperson Alfredo Al S. Panlilio is a Filipino businessman. He has been the Director, President and Chief Executive Officer of PLDT, Inc.[1][2] since June 8, 2021 and wireless subsidiary Smart Communications, Inc.[3] since August 8, 2019.[4] Career Within the PLDT Group, Panlilio holds leadership positions in subsidiaries involved in ICT, digital banking, an...

  ميّز عن عبد الله بن فيصل بن تركي بن عبد الله آل سعود. عبد الله بن فيصل بن تركي الأول آل سعود معلومات شخصية الميلاد سنة 1945  محافظة طريف  تاريخ الوفاة 18 فبراير 2019 (73–74 سنة)[1]  مواطنة السعودية  عضو في هيئة البيعة السعودية  الأب فيصل بن تركي الأول بن عبد ال...

 

 

1921 IRA ambush This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2021) (Learn how and when to remove this template message) Carrowkennedy ambushPart of the Irish War of IndependenceDate2 June 1921LocationCarrowkennedy, County Mayo, Ireland53°42′36″N 9°33′40″W / 53.710°N 9.561°W / 53.710; -9.561Result Irish victoryBe...

 

 

The Militia GroupFounded1998 (1998)Defunct2012 (2012)Country of originU.S.LocationLong Beach, CaliforniaOfficial websitewww.themilitiagroup.com The Militia Group is an independent record company based in Long Beach, California. History The Militia Group was founded in 1998 by Chad Pearson as a booking agency, booking for artists such as Slick Shoes, Craig's Brother, Dogwood, twothirtyeight, Acceptance, and Element 101. Pearson and Rory Felton partnered in 2000 to turn the booking ag...

Campo de Criptana municipio de EspañaBanderaEscudo Vista de la localidad, con un molino en primer plano. Campo de CriptanaUbicación de Campo de Criptana en España. Campo de CriptanaUbicación de Campo de Criptana en la provincia de Ciudad Real.País  España• Com. autónoma  Castilla-La Mancha• Provincia  Ciudad Real• Comarca La Mancha• Partido judicial Alcázar de San Juan• Mancomunidad PromanchaUbicación 39...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Syed Sharf Deen Baghdadi – news · newspapers · books · scholar · JSTOR (November 2020) (Learn how and when to remove this template message) Sindhi Hanbali and Sufi based in Baghdad (1890-1958) Syed Sharf Deen BaghdadiRecently Shrine picture Syed Sharf Deen Bagh...

 

 

Jaime Millás Información personalNacimiento 16 de julio de 1949Valencia (España)Nacionalidad EspañolaInformación profesionalOcupación Periodista, escritor, y gestor cultural[editar datos en Wikidata] Jaime Millás Covas (Valencia, 16 de julio de 1949) es un periodista, escritor y gestor cultural español, que ha escrito y trabajado en numerosos medios informativos de prensa y radio de difusión nacional. Fue director del circuito valenciano de Radiocadena Española (RTVE), de ...

Tsi'ik de venado. El tsi'ik de venado (del maya tsi’ik, 'deshebrar carne')[1]​ es un platillo perteneciente a la gastronomía de Yucatán. Se trata de un salpicón que usa carne de venado (ya sea venado cola blanca o yuk, ambos abundantes en Yucatán) como su ingrediente principal. Originalmente este platillo constaba de carne de venado cocinada en pib y acompañada de sal y naranja agria. Actualmente le agrega rábano, cilantro, cebolla y chile habanero;[2]​ y alternativamente ...

 

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (فبراير 2021) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!