Subgroup

In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.

Formally, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted HG, read as "H is a subgroup of G".

The trivial subgroup of any group is the subgroup {e} consisting of just the identity element.[1]

A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, HG). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e}​).[2][3]

If H is a subgroup of G, then G is sometimes called an overgroup of H.

The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups.

Subgroup tests

Suppose that G is a group, and H is a subset of G. For now, assume that the group operation of G is written multiplicatively, denoted by juxtaposition.

  • Then H is a subgroup of G if and only if H is nonempty and closed under products and inverses. Closed under products means that for every a and b in H, the product ab is in H. Closed under inverses means that for every a in H, the inverse a−1 is in H. These two conditions can be combined into one, that for every a and b in H, the element ab−1 is in H, but it is more natural and usually just as easy to test the two closure conditions separately.[4]
  • When H is finite, the test can be simplified: H is a subgroup if and only if it is nonempty and closed under products. These conditions alone imply that every element a of H generates a finite cyclic subgroup of H, say of order n, and then the inverse of a is an−1.[4]

If the group operation is instead denoted by addition, then closed under products should be replaced by closed under addition, which is the condition that for every a and b in H, the sum a + b is in H, and closed under inverses should be edited to say that for every a in H, the inverse a is in H.

Basic properties of subgroups

  • The identity of a subgroup is the identity of the group: if G is a group with identity eG, and H is a subgroup of G with identity eH, then eH = eG.
  • The inverse of an element in a subgroup is the inverse of the element in the group: if H is a subgroup of a group G, and a and b are elements of H such that ab = ba = eH, then ab = ba = eG.
  • If H is a subgroup of G, then the inclusion map HG sending each element a of H to itself is a homomorphism.
  • The intersection of subgroups A and B of G is again a subgroup of G.[5] For example, the intersection of the x-axis and y-axis in under addition is the trivial subgroup. More generally, the intersection of an arbitrary collection of subgroups of G is a subgroup of G.
  • The union of subgroups A and B is a subgroup if and only if AB or BA. A non-example: is not a subgroup of because 2 and 3 are elements of this subset whose sum, 5, is not in the subset. Similarly, the union of the x-axis and the y-axis in is not a subgroup of
  • If S is a subset of G, then there exists a smallest subgroup containing S, namely the intersection of all of subgroups containing S; it is denoted by S and is called the subgroup generated by S. An element of G is in S if and only if it is a finite product of elements of S and their inverses, possibly repeated.[6]
  • Every element a of a group G generates a cyclic subgroup a. If a is isomorphic to (the integers mod n) for some positive integer n, then n is the smallest positive integer for which an = e, and n is called the order of a. If a is isomorphic to then a is said to have infinite order.
  • The subgroups of any given group form a complete lattice under inclusion, called the lattice of subgroups. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup generated by the set-theoretic union of the subgroups, not the set-theoretic union itself.) If e is the identity of G, then the trivial group {e} is the minimum subgroup of G, while the maximum subgroup is the group G itself.
G is the group the integers mod 8 under addition. The subgroup H contains only 0 and 4, and is isomorphic to There are four left cosets of H: H itself, 1 + H, 2 + H, and 3 + H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. The index [G : H] is 4.

Cosets and Lagrange's theorem

Given a subgroup H and some a in G, we define the left coset aH = {ah : h in H}. Because a is invertible, the map φ : HaH given by φ(h) = ah is a bijection. Furthermore, every element of G is contained in precisely one left coset of H; the left cosets are the equivalence classes corresponding to the equivalence relation a1 ~ a2 if and only if is in H. The number of left cosets of H is called the index of H in G and is denoted by [G : H].

Lagrange's theorem states that for a finite group G and a subgroup H,

where |G| and |H| denote the orders of G and H, respectively. In particular, the order of every subgroup of G (and the order of every element of G) must be a divisor of |G|.[7][8]

Right cosets are defined analogously: Ha = {ha : h in H}. They are also the equivalence classes for a suitable equivalence relation and their number is equal to [G : H].

If aH = Ha for every a in G, then H is said to be a normal subgroup. Every subgroup of index 2 is normal: the left cosets, and also the right cosets, are simply the subgroup and its complement. More generally, if p is the lowest prime dividing the order of a finite group G, then any subgroup of index p (if such exists) is normal.

Example: Subgroups of Z8

Let G be the cyclic group Z8 whose elements are

and whose group operation is addition modulo 8. Its Cayley table is

+ 0 4 2 6 1 5 3 7
0 0 4 2 6 1 5 3 7
4 4 0 6 2 5 1 7 3
2 2 6 4 0 3 7 5 1
6 6 2 0 4 7 3 1 5
1 1 5 3 7 2 6 4 0
5 5 1 7 3 6 2 0 4
3 3 7 5 1 4 0 6 2
7 7 3 1 5 0 4 2 6

This group has two nontrivial subgroups: J = {0, 4} and H = {0, 4, 2, 6} , where J is also a subgroup of H. The Cayley table for H is the top-left quadrant of the Cayley table for G; The Cayley table for J is the top-left quadrant of the Cayley table for H. The group G is cyclic, and so are its subgroups. In general, subgroups of cyclic groups are also cyclic.[9]

Example: Subgroups of S4

S4 is the symmetric group whose elements correspond to the permutations of 4 elements.
Below are all its subgroups, ordered by cardinality.
Each group (except those of cardinality 1 and 2) is represented by its Cayley table.

24 elements

Like each group, S4 is a subgroup of itself.

Symmetric group S4
All 30 subgroups
Simplified

12 elements

The alternating group contains only the even permutations.
It is one of the two nontrivial proper normal subgroups of S4. (The other one is its Klein subgroup.)

Alternating group A4

Subgroups:

8 elements

Dihedral group of order 8

Subgroups:
 
Dihedral group of order 8

Subgroups:
 
Dihedral group of order 8

Subgroups:

6 elements

Symmetric group S3

Subgroup:
Symmetric group S3

Subgroup:
Symmetric group S3

Subgroup:
Symmetric group S3

Subgroup:

4 elements

Klein four-group
Klein four-group
Klein four-group
Klein four-group
(normal subgroup)
Cyclic group Z4
Cyclic group Z4
Cyclic group Z4

3 elements

Cyclic group Z3
Cyclic group Z3
Cyclic group Z3
Cyclic group Z3

2 elements

Each permutation p of order 2 generates a subgroup {1, p}. These are the permutations that have only 2-cycles:

  • There are the 6 transpositions with one 2-cycle.   (green background)
  • And 3 permutations with two 2-cycles.   (white background, bold numbers)

1 element

The trivial subgroup is the unique subgroup of order 1.

Other examples

  • The even integers form a subgroup of the integer ring the sum of two even integers is even, and the negative of an even integer is even.
  • An ideal in a ring R is a subgroup of the additive group of R.
  • A linear subspace of a vector space is a subgroup of the additive group of vectors.
  • In an abelian group, the elements of finite order form a subgroup called the torsion subgroup.

See also

Notes

References

  • Jacobson, Nathan (2009), Basic algebra, vol. 1 (2nd ed.), Dover, ISBN 978-0-486-47189-1.
  • Hungerford, Thomas (1974), Algebra (1st ed.), Springer-Verlag, ISBN 9780387905181.
  • Artin, Michael (2011), Algebra (2nd ed.), Prentice Hall, ISBN 9780132413770.
  • Dummit, David S.; Foote, Richard M. (2004). Abstract algebra (3rd ed.). Hoboken, NJ: Wiley. ISBN 9780471452348. OCLC 248917264.
  • Gallian, Joseph A. (2013). Contemporary abstract algebra (8th ed.). Boston, MA: Brooks/Cole Cengage Learning. ISBN 978-1-133-59970-8. OCLC 807255720.
  • Kurzweil, Hans; Stellmacher, Bernd (1998). Theorie der endlichen Gruppen. Springer-Lehrbuch. doi:10.1007/978-3-642-58816-7. ISBN 978-3-540-60331-3.
  • Ash, Robert B. (2002). Abstract Algebra: The Basic Graduate Year. Department of Mathematics University of Illinois.

Read other articles:

Questa voce sull'argomento petrolio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Riserve di petrolio nel 2013 L'industria petrolifera è il settore dell'industria che si occupa del petrolio includendo tutti i vari processi interessati: estrazione del petrolio dai giacimenti trasporto con oledotti e petroliere trasformazione che avviene nelle raffinerie nell'industria petrolchimica commercializzazione dei prodotti derivati Voci correlate Giacimen...

 

Переписна місцевість Гай-Аманаангл. High Amana Координати 41°48′12″ пн. ш. 91°56′17″ зх. д. / 41.80334000002777373° пн. ш. 91.93823000002778656° зх. д. / 41.80334000002777373; -91.93823000002778656Координати: 41°48′12″ пн. ш. 91°56′17″ зх. д. / 41.80334000002777373° пн. ш. 91.93823000002778656

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2015) طريقة حمض الكبريتيك الرطب (طريقة WSA) هي إحدى الطرق الرئيسية لنزع الكبريت من الغاز والموجودة في السوق اليوم. ومنذ أن قدمت الشركة الدنماركية هولدر توبسو المصن...

Sport en Lettonie Données-clés Comité olympique comité olympique letton Palmarès olympique Médailles 3 15 8 modifier Le sport en Lettonie fut influencé par l'histoire du pays. En effet, la Lettonie accède à l'indépendance en 1991. Ce n'est qu'après cette date que les différentes fédérations sportives ont été créées (ou recréées). Les Lettons sportifs peuvent ainsi concourir sous les couleurs de leur pays. Le sport national est le hockey sur glace. Le football et les sports...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) بوبي أبريل معلومات شخصية الميلاد 15 أبريل 1953 (70 سنة)  نيو أورلينز  مواطنة الولايات المتحدة  الحياة العملية المهنة لاعب كرة قدم أمريكية  الرياضة كرة ال

 

Japanese female professional wrestler (born 1969) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Kyoko Inoue – news · newspapers · books · scholar · JSTOR (February 2010) (Learn how and when to...

State highway in California, United States For the original Sign Route 3, see California State Route 3 (1934). State Route 3SR 3 highlighted in redRoute informationMaintained by CaltransLength146.369 mi[1] (235.558 km)SR 3 is broken into pieces, and the length does not reflect the SR 299 overlap that would be required to make the route continuous.Existed1964 renumbering[2]–presentTouristroutes Trinity Heritage Scenic BywayMajor junctionsSouth end SR ...

 

HMS Euryalus (F15) Astillero Scotts Shipbuilding and Engineering CompanyClase Clase LeanderTipo fragataOperador Marina Real británicaEslora 81,64 metrosManga 14,73 metrosCalado 6,63 metros[editar datos en Wikidata] La HMS Euryalus (F15) fue una fragata clase Leander de la Marina Real británica. Historia La Euryalus pertenecía al Batch 1 (Ikara Group) de la clase Leander, compuesta por otras 26 unidades. Su construcción estuvo a cargo de Scotts Shipbuilding & Eng. Co. La pues...

 

طارق حمد العبد الله وزير الصناعات الخفيفة في المنصب28 حزيران 1982 – 18 كانون الأول 1986 الرئيس صدام حسين رئيس الوزراء صدام حسين لا أحد قاسم أحمد تقي العريبي معلومات شخصية الميلاد سنة 1940  الفلوجة  تاريخ الوفاة 18 ديسمبر 1986 (45–46 سنة)  مواطنة العراق  الديانة مسلم الحياة ا...

CIHI redirects here. For the radio station, see CIHI-FM. Canadian Institute for Health InformationTypePrivate, Not-for-ProfitIndustryHealth care, Health Indicators, Biostatistics, Health InformaticsFounded1994HeadquartersCanadaKey peopleDavid O'Toole, President & CEOProductsHealth Information, ReportsNumber of employees700+Websitewww.cihi.ca The Canadian Institute for Health Information (CIHI) is an independent, not-for-profit organization that provides essential information on Canada’s...

 

Đinh Tiến CườngSinh1973 (49–50 tuổi)Hải Dương, Việt Nam Dân chủ Cộng hòaQuốc tịchViệt NamTư cách công dânViệt NamTrường lớpTHPT chuyên, ĐH SP HNĐại học SorbonneNổi tiếng vìHuy chương vàng Olympic Toán học Quốc tế 1989 với điểm tuyệt đốiSự nghiệp khoa họcNgànhGiải tích phứcNơi công tácĐại học Quốc gia SingaporeLuận án Enveloppe polynomiale d'un compact de longueur finie et probleme du ...

 

1956 massacre of Israeli civilians by Jordanian soldiers Ramat Rachel shooting attackPart of Palestinian Fedayeen insurgencyclass=notpageimage| The attack siteNative nameפיגוע הירי ברמת רחלLocationNear Kibbutz Ramat Rachel, IsraelCoordinates31°44′23″N 35°13′01″E / 31.73972°N 35.21694°E / 31.73972; 35.21694Date23 September 1956; 67 years ago (1956-09-23)Attack typeMass shootingWeaponsSubmachine guns, RiflesDeaths4 Israe...

غاريت ديفيس (بالإنجليزية: Garrett Davis)‏    معلومات شخصية الميلاد 10 سبتمبر 1801  ماونت ستيرلينغ  الوفاة 22 سبتمبر 1872 (71 سنة)   باريس  مواطنة الولايات المتحدة  مناصب عضو مجلس الشيوخ الأمريكي[1]   عضو خلال الفترة10 ديسمبر 1861  – 4 مارس 1863  فترة برلمانية الكونغر...

 

Philips CD-i Philips CD-i 910 Производитель Philips Electronics Magnavox Sony Тип Игровая приставка Media player Поколение Четвёртое Дата выхода Октябрь 1991 1992 1995[1][2] Поддержка прекращена 1998 Продано штук 570 000[3] Носитель CD-i, Audio CD, CD+G, Karaoke CD, VCD, Photo CD Операционнаясистема CD-RTOS[d] ЦП Philips SCC68070 Предыду...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) النظام الفرعي للمحطة الاساسية ال BSS وهو جزء أساسي من هيكلية النظام العالمي للمواصلات الجوالة GSM وهو المسؤل...

Cistercian nunnery in Sweden Ruins of Riserberga Abbey Riseberga Abbey (Swedish: Riseberga kloster), was a Cistercian nunnery in Sweden, in operation from circa 1180 until 1534. It was located near Fjugesta in Närke. It had the right to appoint the vicar of the Edsberg parish, which was under the jurisdiction of the abbey. The ruins of the buildings are preserved, and the Amphitheatre of the abbey are presently used as a Sylvan theater. History Riseberga Abbey was founded in the late 12th-ce...

 

Hosea 13Naskah Komentari Kitab Hosea, 4Q166, dari antara Gulungan Laut Mati yang berasal dari abad ke-1 SM.KitabKitab HoseaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen28← pasal 12 pasal 14 → Hosea 13 (disingkat Hos 13) adalah bagian dari Kitab Hosea dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Kitab yang memuat nubuat yang disampaikan nabi Hosea ini termasuk dalam kumpulan kitab nabi-nabi kecil.[1][2] Teks Naskah asl...

 

United States historic placeRoss Park CarouselU.S. National Register of Historic Places Show map of New YorkShow map of the United StatesLocationRoss Park, Binghamton, New YorkCoordinates42°4′31″N 75°54′28″W / 42.07528°N 75.90778°W / 42.07528; -75.90778Arealess than one acreBuilt1920ArchitectHerschell, Allan, Co.MPSBroome County Carousels MPSNRHP reference No.91001966[1]Added to NRHPJanuary 25, 1992 Ross Park Carousel is a historic carouse...

Public house in Sully, Vale of Glamorgan, Wales The Captain's Wife The Captain's Wife is a public house in the former fishing hamlet of Swanbridge in Sully, between Barry and Penarth, Vale of Glamorgan, south Wales.[1] The pub was established in 1977 from a row of three sea houses. Notable smuggling operations and dove culling once took place here and a tunnel connected the sea to what was known as Sully House.[2] It takes its name from the wife of a sea captain who lived here...

 

Dermot KennedyZákladní informaceRodné jménoDermot Joseph KennedyNarození13. prosince 1991 (32 let)RathcoolePovolánízpěvák, hudební skladatel, textař a nahrávající umělecVydavateléInterscope RecordsIsland RecordsVýznamná dílaWithout FearWebwww.dermotkennedy.comNěkterá data mohou pocházet z datové položky. Dermot Joseph Kennedy (* 13. prosince 1991, Dublin) je irský zpěvák a skladatel. V roce 2019 se proslavil singly „Outnumbered“ a „Giants...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!