Restriction (mathematics)

The function with domain does not have an inverse function. If we restrict to the non-negative real numbers, then it does have an inverse function, known as the square root of

In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend

Formal definition

Let be a function from a set to a set If a set is a subset of then the restriction of to is the function[1] given by for Informally, the restriction of to is the same function as but is only defined on .

If the function is thought of as a relation on the Cartesian product then the restriction of to can be represented by its graph,

where the pairs represent ordered pairs in the graph

Extensions

A function is said to be an extension of another function if whenever is in the domain of then is also in the domain of and That is, if and

A linear extension (respectively, continuous extension, etc.) of a function is an extension of that is also a linear map (respectively, a continuous map, etc.).

Examples

  1. The restriction of the non-injective function to the domain is the injection
  2. The factorial function is the restriction of the gamma function to the positive integers, with the argument shifted by one:

Properties of restrictions

  • Restricting a function to its entire domain gives back the original function, that is,
  • Restricting a function twice is the same as restricting it once, that is, if then
  • The restriction of the identity function on a set to a subset of is just the inclusion map from into [2]
  • The restriction of a continuous function is continuous.[3][4]

Applications

Inverse functions

For a function to have an inverse, it must be one-to-one. If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function defined on the whole of is not one-to-one since for any However, the function becomes one-to-one if we restrict to the domain in which case

(If we instead restrict to the domain then the inverse is the negative of the square root of ) Alternatively, there is no need to restrict the domain if we allow the inverse to be a multivalued function.

Selection operators

In relational algebra, a selection (sometimes called a restriction to avoid confusion with SQL's use of SELECT) is a unary operation written as or where:

  • and are attribute names,
  • is a binary operation in the set
  • is a value constant,
  • is a relation.

The selection selects all those tuples in for which holds between the and the attribute.

The selection selects all those tuples in for which holds between the attribute and the value

Thus, the selection operator restricts to a subset of the entire database.

The pasting lemma

The pasting lemma is a result in topology that relates the continuity of a function with the continuity of its restrictions to subsets.

Let be two closed subsets (or two open subsets) of a topological space such that and let also be a topological space. If is continuous when restricted to both and then is continuous.

This result allows one to take two continuous functions defined on closed (or open) subsets of a topological space and create a new one.

Sheaves

Sheaves provide a way of generalizing restrictions to objects besides functions.

In sheaf theory, one assigns an object in a category to each open set of a topological space, and requires that the objects satisfy certain conditions. The most important condition is that there are restriction morphisms between every pair of objects associated to nested open sets; that is, if then there is a morphism satisfying the following properties, which are designed to mimic the restriction of a function:

  • For every open set of the restriction morphism is the identity morphism on
  • If we have three open sets then the composite
  • (Locality) If is an open covering of an open set and if are such that for each set of the covering, then ; and
  • (Gluing) If is an open covering of an open set and if for each a section is given such that for each pair of the covering sets the restrictions of and agree on the overlaps: then there is a section such that for each

The collection of all such objects is called a sheaf. If only the first two properties are satisfied, it is a pre-sheaf.

Left- and right-restriction

More generally, the restriction (or domain restriction or left-restriction) of a binary relation between and may be defined as a relation having domain codomain and graph Similarly, one can define a right-restriction or range restriction Indeed, one could define a restriction to -ary relations, as well as to subsets understood as relations, such as ones of the Cartesian product for binary relations. These cases do not fit into the scheme of sheaves.[clarification needed]

Anti-restriction

The domain anti-restriction (or domain subtraction) of a function or binary relation (with domain and codomain ) by a set may be defined as ; it removes all elements of from the domain It is sometimes denoted  ⩤ [5] Similarly, the range anti-restriction (or range subtraction) of a function or binary relation by a set is defined as ; it removes all elements of from the codomain It is sometimes denoted  ⩥ 

See also

References

  1. ^ Stoll, Robert (1974). Sets, Logic and Axiomatic Theories (2nd ed.). San Francisco: W. H. Freeman and Company. pp. [36]. ISBN 0-7167-0457-9.
  2. ^ Halmos, Paul (1960). Naive Set Theory. Princeton, NJ: D. Van Nostrand. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. ISBN 978-1-61427-131-4 (Paperback edition).
  3. ^ Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River: Prentice Hall. ISBN 0-13-181629-2.
  4. ^ Adams, Colin Conrad; Franzosa, Robert David (2008). Introduction to Topology: Pure and Applied. Pearson Prentice Hall. ISBN 978-0-13-184869-6.
  5. ^ Dunne, S. and Stoddart, Bill Unifying Theories of Programming: First International Symposium, UTP 2006, Walworth Castle, County Durham, UK, February 5–7, 2006, Revised Selected ... Computer Science and General Issues). Springer (2006)

Read other articles:

В Википедии есть статьи о других людях с такой фамилией, см. Вентцель. Елена Вентцель Имя при рождении Елена Сергеевна Долгинцева Дата рождения 8 (21) марта 1907 или 21 марта 1907(1907-03-21)[1] Место рождения Ревель, Российская империя Дата смерти 15 апреля 2002(2002-04-15)[2][1]...

 

German footballer (1907–1982) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (October 2013) (Learn how and when to remove this template message) Walter Kaiser Walter KaiserPersonal informationDate of birth (1907-11-02)2 November 1907Place of birth Neuwied, GermanyDate of death 25 February 1982(1982-02-25) (aged 74)...

 

Joseph Tasker (* 12. Mai 1948 in Hull; † 17. Mai 1982 am Mount Everest) war einer der talentiertesten britischen Bergsteiger in den späten 1970er- und frühen 1980er-Jahren und Buchautor. Biografie Er war eines von zehn Kindern in einer traditionell römisch-katholischen Familie. Seine frühe Kindheit verbrachte er in Port Clarence, Middlesbrough, ging dann im Alter von 13 bis 20 Jahren auf dem Ushaw Seminary im County Durham zur Schule, eine Vorbereitung, um Priester und Jesuit zu werden....

Kabupaten JeparaKabupatenTranskripsi bahasa daerah • HanacarakaꦗꦼꦥꦫDari kiri ke kanan, atas ke bawah: Tanjung Gelam Karimunjawa, Kura-Kura Ocean Park, Monumen Jepara, dan Masjid Agung Baitul Makmur Jepara. LambangJulukan: Kota UkirBumi KartiniScheveningen van JavaThe World Woodcarving CentreMotto: Trus karya tataning bumi(Jawa) Terus bekerja keras membangun daerah(1549 Masehi)[1]PetaKabupaten JeparaPetaTampilkan peta JawaKabupaten JeparaKabupaten Jep...

 

Ce Dauphin de la Marine Nationale montre bien ses marquages de l'action de l'État à la mer. Sur ce cliché les marquages AEM apparaissent parfaitement sur la coque de l'Abeille Languedoc. Le Marquage de l'action de l'État en mer ou marquage AEM est un ensemble de marques visuelles portées par les bâtiments et aéronefs de la Marine nationale chargés de missions de service public. Il en va de même des bâtiments affrétés[1], ainsi que de ceux des Affaires maritimes, des douanes, et de...

 

Suasana sungai Ping di malam hari Sungai Ping merupakan hulu sungai dari Sungai Chao Phraya di Thailand. Sungai ini bersumber dari Doi Chiang Dao, daerah provinsi Chiang Mai dan melintasi Lamphun, Tak, Kamphaeng Phet. Sungai Ping membentuk aliran sungai Chao Praya setelah bertemu dengan Sungai Nan di Nakhon Sawan. Artikel bertopik geografi atau tempat Thailand ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

Rose of the RanchoAdegan dari film tersebut.Sutradara Cecil B. DeMille Produser Cecil B. DeMille Jesse L. Lasky Ditulis olehDavid Belasco (sandiwara)Richard Walton Tully (sandiwara)Cecil B. DeMillePemeranBessie BarriscaleSinematograferAlvin WyckoffPenyuntingCecil B. DeMillePerusahaanproduksiJesse Lasky Feature PlaysDistributorParamount PicturesTanggal rilis 15 November 1914 (1914-11-15) Negara Amerika Serikat BahasaFilm bisu dengan antar judul Inggris Rose of the Rancho adalah sebuah fil...

 

Federal systems of Canada For the political ideology that favours Quebec remaining within the Canadian federation rather than pursuing independence, see Federalism in Quebec. Not to be confused with Canadian nationalism. This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (January 2016) (Learn how and when to remove this template message) Politics of Canada Government (struct...

 

Крыша тарга на Porsche 914 Тáрга — тип автомобильного кузова легкового автомобиля, разновидность спортивного 2-местного родстера с жёстко закреплённым лобовым стеклом, дугой безопасности сзади сидений, съёмной крышей и задним стеклом. В современном автомобилестроении, т...

Escalaplano ScaleprànuKomuneComune di EscalaplanoLokasi Escalaplano di Provinsi Sardinia SelatanNegara ItaliaWilayah SardiniaProvinsiSardinia Selatan (SU)Pemerintahan • Wali kotaMarco LampisLuas • Total94,04 km2 (36,31 sq mi)Ketinggian338 m (1,109 ft)Populasi (2016) • Total2,196[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos08043Kode area telepon070Situs webhttp://www.comune.escalaplan...

 

JapananDesaNegara IndonesiaProvinsiJawa TimurKabupatenJombangKecamatanMojowarnoKode pos61475Kode Kemendagri35.17.07.2011 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Japanan adalah sebuah desa di wilayah Kecamatan Mojowarno, Kabupaten Jombang, Provinsi Jawa Timur. Di desa ini terdapat beberapa peninggalan situs sejarah yang diyakini sebagai situs peninggalan zaman Kerajaan Majapahit. Salah satunya yaitu situs Yoni Gambar atau masyarakat sekitar menyebutnya Mbah Gambar. Situs...

 

Kekristenan Manorit LebanonYohanes dari DamaskusElias Peter HoayekYoussef KaramSharbel MakhloufKhalil GibranCamille ChamounBachir GemayelNasrallah Boutros SfeirBechara Boutros al-RahiMichel SuleimanRola SaadElissa KhouryZiyad BaroudNadine LabakiFairuzJumlah populasi1,062,000[1]BahasaBahasa daerah:Bahasa Arab LebanonAgamaKristen (Katolik Maronit)Kelompok etnik terkaitLebanon lainnya & Arab Levant  • Arab Ghassaniyah  • Orang Fenisia  • orang Mediterania lainnya...

German archirtect and maler Ludwig von Zanth Ludwig von Zanth: View of the Wilhelma (1855). The Wilhelma-Theater (not in the picture) and Wilhelma with its gardens and Moorish buildings are the main works of Ludwig von Zanth. Karl Ludwig Wilhelm Zanth, from 1844 von Zanth, also Zandt (6 August 1796 – 7 October 1857) was a German architect, architecture critic and watercolor painter. Life and career Born in Breslau, Zanth was the son of the Jewish doctor Abraham Zadig, who was in the service...

 

ITV weekday service for London This article is about the London franchise. For other Carlton-branded franchises, see Carlton Central and Carlton Westcountry. For Carlton's owner, see Carlton Communications. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Carlton Television – news · newspapers · books · scholar...

 

GoldSrc Тип Игровой движок (Список) Разработчик Valve Предыдущий движок серии Quake engine Следующий движок серии Source Аппаратная платформа PC, PlayStation 2, Dreamcast, Xbox Поддерживаемая ОС Microsoft Windows, OS X, GNU/Linux Написан на языке Си, язык ассемблера и C++ Лицензия коммерческая Первая игра н...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أبريل 2023) هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق ...

 

For the 1922-1955 story paper, see The Champion (story paper). British weekly boys' comic The ChampionThe cover to The Champion, dated 5 March, 1966 and featuring Jet Jordan.Publication informationPublisherIPC/Fleetway Publications, 1966ScheduleWeeklyFormatOngoing seriesGenre Action/adventure Publication date26 February – 4 June 1966No. of issues15Editor(s)Gil Page The Champion was a weekly British comics periodical published by Fleetway Publications from 26 February to 4 June 1966. Th...

 

Taiwanese TV series or program The Legend of HeroVCD cover artTraditional Chinese中華英雄Simplified Chinese中华英雄Literal meaningChinese HeroHanyu PinyinZhōnghuá Yīngxíong GenreWuxiaBased onChinese Hero: Tales of the Blood Swordby Ma Wing-shingStarringPeter HoAdy AnCountry of originTaiwanOriginal languageMandarinNo. of episodes40ProductionProducerYoung Pei-peiProduction locationTaiwanRunning time45 minutes per episode The Legend of Hero is a 2005 Taiwanese television se...

Temple attributed to Anahita 34°30′05″N 47°57′37″E / 34.501389°N 47.960278°E / 34.501389; 47.960278 (Anahita temple, Kangavar, Iran) For the Anahid temple in Fars Province, see Temple of Anahita, Istakhr.For other places with similar names, see Temple of Anahita.Temple of AnahitaProvinceKermanshah ProvinceLocationLocation Kangavar County, IranThe Anahita Temple (Persian: پرستشگاه‌ آناهیتا) is the name of one of two archaeological si...

 

Ahmed Kara-Ahmed Retrato del escultor hacia 1992Información personalNacimiento 1923ArgelFallecimiento 20 de septiembre de 2018 (95 años)Nacionalidad ArgeliaInformación profesionalÁrea pintura, escultura[editar datos en Wikidata] Ahmed Kara-Ahmed conocido como Ahmed Kara, nacido en Argel en 1923,es un pintor y escultor argelino . Promotor del desarrollo de las artes plásticas en su país. Datos biográficos Ahmed Kara nació en Argel en 1923. Asistió a la Escuela de Bellas Arte...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!