Quantum annealing (QA) is an optimization process for finding the global minimum of a given objective function over a given set of candidate solutions (candidate states), by a process using quantum fluctuations. Quantum annealing is used mainly for problems where the search space is discrete (combinatorial optimization problems) with many local minima; such as finding[1] the ground state of a spin glass or solving the traveling salesman problem. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as a quantum-inspired classical algorithm.[2][3] It was formulated in its present form by T. Kadowaki and H. Nishimori (ja) in 1998,[4] though an imaginary-time variant without quantum coherence had been discussed by A. B. Finnila, M. A. Gomez, C. Sebenik and J. D. Doll in 1994.[5]
Quantum annealing starts from a quantum-mechanical superposition of all possible states (candidate states) with equal weights. Then the system evolves following the time-dependent Schrödinger equation, a natural quantum-mechanical evolution of physical systems. The amplitudes of all candidate states keep changing, realizing a quantum parallelism, according to the time-dependent strength of the transverse field, which causes quantum tunneling between states or essentially tunneling through peaks. If the rate of change of the transverse field is slow enough, the system stays close to the ground state of the instantaneous Hamiltonian (also see adiabatic quantum computation).[6] If the rate of change of the transverse field is accelerated, the system may leave the ground state temporarily but produce a higher likelihood of concluding in the ground state of the final problem Hamiltonian, i.e., Diabatic quantum computation.[7][8] The transverse field is finally switched off, and the system is expected to have reached the ground state of the classical Ising model that corresponds to the solution to the original optimization problem. An experimental demonstration of the success of quantum annealing for random magnets was reported immediately after the initial theoretical proposal.[9] Quantum annealing has also been proven to provide a fast Grover oracle for the square-root speedup in solving many NP-complete problems.[10]
Comparison to Simulated Annealing
Quantum annealing can be compared to simulated annealing, whose "temperature" parameter plays a similar role to quantum annealing's tunneling field strength. In simulated annealing, the temperature determines the probability of moving to a state of higher "energy" from a single current state. In quantum annealing, the strength of transverse field determines the quantum-mechanical probability to change the amplitudes of all states in parallel. Analytical[11] and numerical[12] evidence suggests that quantum annealing outperforms simulated annealing under certain conditions (see Heim et al[13] and see Yan and Sinitsyn[14] for a fully solvable model of quantum annealing to arbitrary target Hamiltonian and comparison of different computation approaches).
Quantum mechanics: analogy and advantage
The tunneling field is basically a kinetic energy term that does not commute with the classical potential energy part of the original glass. The whole process can be simulated in a computer using quantum Monte Carlo (or other stochastic technique), and thus obtain a heuristic algorithm for finding the ground state of the classical glass.
In the case of annealing a purely mathematical objective function, one may consider the variables in the problem to be classical degrees of freedom, and the cost functions to be the potential energy function (classical Hamiltonian). Then a suitable term consisting of non-commuting variable(s) (i.e. variables that have non-zero commutator with the variables of the original mathematical problem) has to be introduced artificially in the Hamiltonian to play the role of the tunneling field (kinetic part). Then one may carry out the simulation with the quantum Hamiltonian thus constructed (the original function + non-commuting part) just as described above. Here, there is a choice in selecting the non-commuting term and the efficiency of annealing may depend on that.
It has been demonstrated experimentally as well as theoretically, that quantum annealing can outperform thermal annealing (simulated annealing) in certain cases, especially where the potential energy (cost) landscape consists of very high but thin barriers surrounding shallow local minima.[15] Since thermal transition probabilities (proportional to , with the temperature and the Boltzmann constant) depend only on the height of the barriers, for very high barriers, it is extremely difficult for thermal fluctuations to get the system out from such local minima. However, as argued earlier in 1989 by Ray, Chakrabarti & Chakrabarti,[1] the quantum tunneling probability through the same barrier (considered in isolation) depends not only on the height of the barrier, but also on its width and is approximately given by , where is the tunneling field.[16] This additional handle through the width , in presence of quantum tunneling, can be of major help: If the barriers are thin enough (i.e. ), quantum fluctuations can surely bring the system out of the shallow local minima. For an -spin glass, the barrier height becomes of order . For constant value of one gets proportional to for the annealing time (instead of proportional to for thermal annealing), while can even become -independent for cases where decreases as .[17][18]
It is speculated that in a quantum computer, such simulations would be much more efficient and exact than that done in a classical computer, because it can perform the tunneling directly, rather than needing to add it by hand. Moreover, it may be able to do this without the tight error controls needed to harness the quantum entanglement used in more traditional quantum algorithms. Some confirmation of this is found in exactly solvable models.[19][20]
Timeline of ideas related to quantum annealing in Ising spin glasses:
1989 Idea was presented that quantum fluctuations could help explore rugged energy landscapes of the classical Ising spin glasses by escaping from local minima (having tall but thin barriers) using tunneling;[1]
1998 Formulation of quantum annealing and numerical test demonstrating its advantages in Ising glass systems;[4]
1999 First experimental demonstration of quantum annealing in LiHoYF Ising glass magnets;[21]
2011 Superconducting-circuit quantum annealing machine built and marketed by D-Wave Systems.[22]
In 2011, D-Wave Systems announced the first commercial quantum annealer on the market by the name D-Wave One and published a paper in Nature on its performance.[22] The company claims this system uses a 128 qubit processor chipset.[23] On May 25, 2011, D-Wave announced that Lockheed Martin Corporation entered into an agreement to purchase a D-Wave One system.[24] On October 28, 2011 University of Southern California's (USC) Information Sciences Institute took delivery of Lockheed's D-Wave One.
In May 2013, it was announced that a consortium of Google, NASA Ames and the non-profit Universities Space Research Association purchased an adiabatic quantum computer from D-Wave Systems with 512 qubits.[25][26] An extensive study of its performance as quantum annealer, compared to some classical annealing algorithms, is available.[27]
In June 2014, D-Wave announced a new quantum applications ecosystem with computational finance firm 1QB Information Technologies (1QBit) and cancer research group DNA-SEQ to focus on solving real-world problems with quantum hardware.[28] As the first company dedicated to producing software applications for commercially available quantum computers, 1QBit's research and development arm has focused on D-Wave's quantum annealing processors and has demonstrated that these processors are suitable for solving real-world applications.[29]
With demonstrations of entanglement published,[30] the question of whether or not the D-Wave machine can demonstrate quantum speedup over all classical computers remains unanswered. A study published in Science in June 2014, described as "likely the most thorough and precise study that has been done on the performance of the D-Wave machine"[31] and "the fairest comparison yet", attempted to define and measure quantum speedup. Several definitions were put forward as some may be unverifiable by empirical tests, while others, though falsified, would nonetheless allow for the existence of performance advantages. The study found that the D-Wave chip "produced no quantum speedup" and did not rule out the possibility in future tests.[32] The researchers, led by Matthias Troyer at the Swiss Federal Institute of Technology, found "no quantum speedup" across the entire range of their tests, and only inconclusive results when looking at subsets of the tests. Their work illustrated "the subtle nature of the quantum speedup question". Further work[33] has advanced understanding of these test metrics and their reliance on equilibrated systems, thereby missing any signatures of advantage due to quantum dynamics.
There are many open questions regarding quantum speedup. The ETH reference in the previous section is just for one class of benchmark problems. Potentially there may be other classes of problems where quantum speedup might occur. Researchers at Google, LANL, USC, Texas A&M, and D-Wave are working to find such problem classes.[34]
D-Wave's architecture differs from traditional quantum computers. It is not known to be polynomially equivalent to a universal quantum computer and, in particular, cannot execute Shor's algorithm because Shor's algorithm is not a hillclimbing process.[citation needed] Shor's algorithm requires a universal quantum computer. During the Qubits 2021 conference held by D-Wave, it was announced[36] that the company is developing their first universal quantum computers, capable of running Shor's algorithm in addition to other gate-model algorithms such as QAOA and VQE.
"A cross-disciplinary introduction to quantum annealing-based algorithms" [37] presents an introduction to combinatorial optimization (NP-hard) problems, the general structure of quantum annealing-based algorithms and two examples of this kind of algorithms for solving instances of the max-SAT (maximum satisfiable problem) and Minimum Multicut problems, together with an overview of the quantum annealing systems manufactured by D-Wave Systems. Hybrid quantum-classic algorithms for large-scale discrete-continuous optimization problems were reported to illustrate the quantum advantage.[38][39]
^Apolloni, Bruno; Cesa-Bianchi, Nicolo; De Falco, Diego (July 1988). "A numerical implementation of quantum annealing". Stochastic Processes, Physics and Geometry, Proceedings of the Ascona-Locarno Conference.
^Smelyanskiy, Vadim N.; Rieffel, Eleanor G.; Knysh, Sergey I.; Williams, Colin P.; Johnson, Mark W.; Thom, Murray C.; Macready, William G.; Pudenz, Kristen L. (2012). "A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration". arXiv:1204.2821 [quant-ph].
^Steiger, Damian; Heim, Bettina; Rønnow, Troels; Troyer, Matthias (October 22, 2015). "Performance of quantum annealing hardware". In Huckridge, David A.; Ebert, Reinhard; Gruneisen, Mark T.; Dusek, Miloslav; Rarity, John G. (eds.). Electro-Optical and Infrared Systems: Technology and Applications XII; and Quantum Information Science and Technology. Vol. 9648. p. 964816. Bibcode:2015SPIE.9648E..16S. doi:10.1117/12.2202661. S2CID57916974.
Li, Fuxiang; Chernyak, V. Y.; Sinitsyn, N. A. (2013). "Quantum Annealing and Computation: A Brief Documentary Note". Science and Culture. 79: 485–500. arXiv:1310.1339. Bibcode:2013arXiv1310.1339G..
Suzuki, S.; Inoue, J.-I. & Chakrabarti, B. K. (2013). "Chapter 8 on Quantum Annealing". Quantum Ising Phases & Transitions in Transverse Ising Models (2nd ed.). Heidelberg: Springer. ISBN978-3-64233-038-4.
Duta Besar Indonesia untuk Arab SaudiMerangkap Organisasi Kerjasama IslamLambang Kementerian Luar Negeri Republik IndonesiaPetahanaAbdul Aziz Ahmadsejak 25 Oktober 2021KantorRiyadh, Arab SaudiDitunjuk olehPresiden IndonesiaPejabat perdanaH. M. RasyidiDibentuk1950Situs webkemlu.go.id/riyadh/id Menurut buku Sedjarah Perwakilan Republik Indonesia Cairo, tahun 1962, dijelaskan bahwa pada tanggal 25 Februari 1950, Pemerintah Indonesia secara resmi membuka Perwakilan Diplomatik di Kairo dengan...
Markus Oehlen (* 1956 in Krefeld) ist ein deutscher zeitgenössischer Künstler (Malerei, Objekte, Installationen, Musik (Punk und New Wave)). Inhaltsverzeichnis 1 Werdegang 2 Werk 3 Diskografie 4 Ausstellungen 5 Literatur 6 Filme 7 Weblinks 8 Einzelnachweise Werdegang Markus Oehlen, der Bruder von Albert Oehlen, wurde 1956 in Krefeld geboren. Sein Vater, Adolf Oehlen, ist Grafiker und Cartoonzeichner. Von 1971 bis 1973 absolvierte Oehlen eine Lehre als technischer Zeichner. Von 1976 bis 1982...
This article is about the Bryan Adams album. For The Detroit Emeralds album, see You Want It, You Got It. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: You Want It You Got It – news · newspapers · books · scholar · JSTOR (June 2010) (Learn how and when to remove this template message) 1981 studio album ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كأس آسيا 1964تفاصيل المسابقةالبلد المضيفاسرائيلالتواريخ26 مايو – 9 يونيوالفرق4الأماكن4 (في 4 مدن مضيفة)ا...
Chailly-lès-Ennery Chailly-lès-Ennery (Frankreich) Staat Frankreich Region Grand Est Département (Nr.) Moselle (57) Arrondissement Metz Kanton Le Pays messin Gemeindeverband Rives de Moselle Koordinaten 49° 12′ N, 6° 14′ O49.2066666666676.2358333333333Koordinaten: 49° 12′ N, 6° 14′ O Höhe 169–244 m Fläche 7,29 km² Einwohner 425 (1. Januar 2020) Bevölkerungsdichte 58 Einw./km² Postleitzahl 57365 INSEE-Code 57125 Vorla...
Australian psychedelic music project Tame ImpalaTame Impala performing in 2019 at Flow FestivalBackground informationOriginPerth, Western Australia, AustraliaGenres Psychedelic pop[1] psychedelic rock[2] indie rock[3] synth-pop[4] neo-psychedelia[5] Years active2007–presentLabels Modular Interscope Fiction Island Australia SpinoffsPondMembers Kevin Parker (see touring members) Websitetameimpala.com Tame Impala is the psychedelic music project of Austr...
Fort MenagouècheSaint John, New Brunswick, Canada Fort MenagouècheCoordinates45°15′52″N 66°04′25″W / 45.2644°N 66.0736°W / 45.2644; -66.0736TypeHistorical French Fort National Historic Site of CanadaOfficial nameFort Charnisay National Historic Site of CanadaDesignated1923 Site informationOwner Canada: National Historic Sites of CanadaControlled by1751-1755: France1758-?: British Empire?-present: CanadaSite historyBuilt17...
African-American physicianJuan F. Bennett DrummondBorn(1864-06-07)June 7, 1864New Bedford, MassachusettsDiedNovember 4, 1926(1926-11-04) (aged 62)New Bedford, MassachusettsEducationWoman's Medical College of PennsylvaniaKnown forFirst African American woman to hold a medical license in Massachusetts Juan F. Bennett Drummond (June 7, 1864 - November 4, 1926) was an American physician. In 1888, she became the first African American woman to become a licensed doctor in the U.S. state o...
У Вікіпедії є статті про інші значення цього терміна: Музей природознавства. Не плутати з Національним музеєм природознавства у Вашингтоні. Американський музей природознавства англ. American Museum of Natural History 40°46′51″ пн. ш. 73°58′28″ зх. д. / 40.78083333336110883° пн....
1993 single by Peter Gabriel SteamSingle by Peter Gabrielfrom the album Us Released4 January 1993 (1993-01-04)[1]GenreFunk rock[2]Length6:03 (album version)5:19 (video edit)4:45 (radio edit)LabelGeffenSongwriter(s)Peter GabrielProducer(s)Daniel LanoisPeter GabrielPeter Gabriel singles chronology Digging in the Dirt (1992) Steam (1993) Blood of Eden (1993) Steam is a song by English rock musician Peter Gabriel, released in January 1993 as the second single from h...
Minecraft server and map containing banned reporting The Uncensored LibraryDeveloper(s)Berlin DDB, BlockWorks, MediaMonks, Reporters Without Borders[a]Initial releaseMarch 12, 2020; 3 years ago (2020-03-12)TypeMinecraft server & mapWebsiteuncensoredlibrary.com The Uncensored Library is a Minecraft server and map released by Reporters Without Borders and created by BlockWorks, DDB Berlin,[1] and MediaMonks[2] as an attempt to circumvent censorship ...
Indian actor, producer and director Santhosh PanditSanthosh Pandit in 2021BornKozhikode, Kerala, India[1]OccupationsActorcomposersingereditorproducerscreenwriterYears active2010 - presentChildren1 Santhosh Pandit is an Indian actor, producer, screenwriter, composer, singer, and film editor.[2][3] He is best known for his 2011 low-budget film Krishnanum Radhayum and a music video of the same name which went viral.[4][5] Career Pandit's first movie, ...
Eskudo sa Rehiyon sa Umbria Mapa nga nagpakita kon asa ang mga lalawigan sa Rehiyon sa Umbria Ang Umbria maoy rehiyon sa tunga-tungang Italya. Perugia ang kapital niini. Mga lalawigan sa Umbria Perugia Terne thuMga Rehiyon sa Italya AbruzzoWalog sa AostaApuliaBasilicata CalabriaCampaniaEmilia-RomagnaFriuli-Venezia Giulia Lazio (Lacio)LiguriaLombardiaMarche MolisePiemonteSardegna (Cerdeña)Sicilia Trentino-Alto Adige/SüdtirolToscanaUmbriaVeneto Kinìng maong artikulo mao usa...
2011 Pakistani TV series or programme Main Chand SiGenreRomance, dramaWritten byMemona Khurshid AliDirected byBabar JavedStarringSaba QamarSami KhanFahad MustafaCountry of originPakistanOriginal languageUrduNo. of episodes23ProductionProducersAsif Raza Mir Babar JavedProduction locationKarachiOriginal releaseNetworkARY DigitalRelease2011 (2011) Main Chand Si is a 2011 Pakistani romantic drama, that was aired on ARY Digital. The series starred Sami Khan, Saba Qamar and Fahad Mus...
Cet article est une ébauche concernant le ski de fond et une personnalité suédoise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Gunnar Larsson. Gunnar LarssonBiographieNaissance 1er juillet 1944 (79 ans)Järna (commune de Vansbro)Nationalité suédoiseActivité FondeurAutres informationsSport Ski de fondmodifier - modifier le code - modifier Wikidata Gunnar Larsson (n...
1973 live album by Don ByasMidnight at Minton'sLive album by Don ByasReleased1973Recorded1941GenreJazzLength38:51LabelHigh Note RecordsProducerDon Schlitten Professional ratingsReview scoresSourceRatingAllMusic[1]The Penguin Guide to Jazz Recordings [2] Midnight at Minton's is an album by jazz musician Don Byas, first released in 1973. It is a live recording of a 1941 jam session at Minton's Playhouse, the New York City nightclub at which the emerging style of bebop wa...
Основные статьи: Орден Народного героя и Список Народных героев Югославии В настоящем списке в алфавитном порядке представлены все Народные герои Югославии, чьи фамилии начинаются с буквы «Х» (всего 21 человек). В списке указаны даты присвоения звания и даты жизни Героев....
High school in New Jersey, United States Highland Park High SchoolAddress102 North Fifth AvenueHighland Park, Middlesex County, New Jersey 08904United StatesCoordinates40°30′06″N 74°25′28″W / 40.501676°N 74.424563°W / 40.501676; -74.424563InformationTypePublicEstablishedSeptember 1926School districtHighland Park Public SchoolsNCES School ID340717003372[1]PrincipalMichael LassiterFaculty44.0 FTEs[1]Grades9-12Enrollment488 (as of 2021–22) ...