List of quantum processors
List of quantum computer components
This list contains quantum processors , also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published physical qubit numbers do not reflect the performance levels of the processor. This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume , randomized benchmarking or circuit layer operations per second (CLOPS).[ 1]
Circuit-based quantum processors
These QPUs are based on the quantum circuit and quantum logic gate -based model of computing .
Manufacturer
Name/codename
designation
Architecture
Layout
Fidelity (%)
Qubits (physical)
Release date
Quantum volume
Alpine Quantum Technologies
PINE System[ 2]
Trapped ion
24[ 3]
June 7, 2021
128[ 4]
Atom Computing
Phoenix
Neutral atoms in optical lattices
100[ 5]
August 10, 2021
Atom Computing
N/A
Neutral atoms in optical lattices
35×35 lattice (with 45 vacancies)
< 99.5 (2 qubits)[ 6]
1180[ 7] [ 8]
October 2023
Google
N/A
Superconducting
N/A
99.5[ 9]
20
2017
Google
N/A
Superconducting
7×7 lattice
99.7[ 9]
49[ 10]
Q4 2017 (planned)
Google
Bristlecone
Superconducting transmon
6×12 lattice
99 (readout) 99.9 (1 qubit) 99.4 (2 qubits)
72[ 11] [ 12]
March 5, 2018
Google
Sycamore
Superconducting transmon
9×6 lattice
N/A
53 effective (54 total)
2019
Google
Willow
Superconducting transmon
7×7 lattice
99.965% (1-qubit) 99.67% (2-qubit) Surface code error correction implemented.
49 effective (105 total)
December 9, 2024 [ 13]
IBM
IBM Q 5 Tenerife
Superconducting
bow tie
99.897 (average gate) 98.64 (readout)
5
2016 [ 9]
IBM
IBM Q 5 Yorktown
Superconducting
bow tie
99.545 (average gate) 94.2 (readout)
5
IBM
IBM Q 14 Melbourne
Superconducting
N/A
99.735 (average gate) 97.13 (readout)
14
IBM
IBM Q 16 Rüschlikon
Superconducting
2×8 lattice
99.779 (average gate) 94.24 (readout)
16[ 14]
May 17, 2017 (Retired: 26 September 2018)[ 15]
IBM
IBM Q 17
Superconducting
N/A
N/A
17[ 14]
May 17, 2017
IBM
IBM Q 20 Tokyo
Superconducting
5×4 lattice
99.812 (average gate) 93.21 (readout)
20[ 16]
November 10, 2017
IBM
IBM Q 20 Austin
Superconducting
5×4 lattice
N/A
20
(Retired: 4 July 2018)[ 15]
IBM
IBM Q 50 prototype
Superconducting transmon
N/A
N/A
50[ 16]
IBM
IBM Q 53
Superconducting
N/A
N/A
53
October 2019
IBM
IBM Eagle
Superconducting transmon
N/A
N/A
127[ 17]
November 2021
IBM
IBM Osprey [ 7] [ 8]
Superconducting
N/A
N/A
433[ 17]
November 2022
IBM
IBM Condor [ 18] [ 7]
Superconducting
Honeycomb[ 19]
N/A
1121[ 17]
December 2023
IBM
IBM Heron [ 18] [ 7]
Superconducting
N/A
N/A
133
December 2023
IBM
IBM Heron R2[ 20]
Superconducting
Heavy hex
96.5 (2 qubits)
156
November 2024
IBM
IBM Armonk[ 21]
Superconducting
Single Qubit
N/A
1
October 16, 2019
IBM
IBM Ourense[ 21]
Superconducting
T
N/A
5
July 3, 2019
IBM
IBM Vigo[ 21]
Superconducting
T
N/A
5
July 3, 2019
IBM
IBM London[ 21]
Superconducting
T
N/A
5
September 13, 2019
IBM
IBM Burlington[ 21]
Superconducting
T
N/A
5
September 13, 2019
IBM
IBM Essex[ 21]
Superconducting
T
N/A
5
September 13, 2019
IBM
IBM Athens[ 22]
Superconducting
N/A
5
32[ 23]
IBM
IBM Belem[ 22]
Superconducting
Falcon r4T[ 24]
N/A
5
16[ 24]
IBM
IBM Bogotá[ 22]
Superconducting
Falcon r4L[ 24]
N/A
5
32[ 24]
IBM
IBM Casablanca[ 22]
Superconducting
Falcon r4H[ 24]
N/A
7
(Retired – March 2022)
32[ 24]
IBM
IBM Dublin[ 22]
Superconducting
N/A
27
64
IBM
IBM Guadalupe[ 22]
Superconducting
Falcon r4P[ 24]
N/A
16
32[ 24]
IBM
IBM Kolkata
Superconducting
N/A
27
128
IBM
IBM Lima[ 22]
Superconducting
Falcon r4T[ 24]
N/A
5
8[ 24]
IBM
IBM Manhattan[ 22]
Superconducting
N/A
65
32[ 23]
IBM
IBM Montreal[ 22]
Superconducting
Falcon r4[ 24]
N/A
27
128[ 24]
IBM
IBM Mumbai[ 22]
Superconducting
Falcon r5.1[ 24]
N/A
27
128[ 24]
IBM
IBM Paris[ 22]
Superconducting
N/A
27
32[ 23]
IBM
IBM Quito[ 22]
Superconducting
Falcon r4T[ 24]
N/A
5
16[ 24]
IBM
IBM Rome[ 22]
Superconducting
N/A
5
32[ 23]
IBM
IBM Santiago[ 22]
Superconducting
N/A
5
32[ 23]
IBM
IBM Sydney[ 22]
Superconducting
Falcon r4[ 24]
N/A
27
32[ 24]
IBM
IBM Toronto[ 22]
Superconducting
Falcon r4[ 24]
N/A
27
32[ 24]
Intel
17-Qubit Superconducting Test Chip
Superconducting
40-pin cross gap
N/A
17[ 25] [ 26]
October 10, 2017
Intel
Tangle Lake
Superconducting
108-pin cross gap
N/A
49[ 27]
January 9, 2018
Intel
Tunnel Falls
Semiconductor spin qubits
12[ 28]
June 15, 2023
IonQ
Harmony
Trapped ion
All-to-All[ 24]
99.73 (1 qubit)
90.02 (2 qubit)
99.30 (SPAM )
11[ 29]
2022
8[ 24]
IonQ
Aria
Trapped ion
All-to-All[ 24]
99.97 (1 qubit)
98.33 (2 qubit)
98.94 ((SPAM )
25[ 29]
2022
IonQ
Forte
Trapped ion
366x1 chain[ 30] All-to-All[ 24]
99.98 (1 qubit) 98.5–99.3 (2 qubit)[ 30] 99.56 ((SPAM )
36[ 29] (earlier 32)
2022
IQM
-
Superconducting
Star
99.91 (1 qubit) 99.14 (2 qubits)
5[ 31]
November 30, 2021 [ 32]
N/A
IQM
-
Superconducting
Square lattice
99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max)
20
October 9, 2023 [ 33]
16[ 34]
M Squared Lasers
Maxwell
Neutral atoms in optical lattices
99.5 (3-qubit gate), 99.1 (4-qubit gate)[ 35]
200[ 36]
November 2022
Oxford Quantum Circuits
Lucy[ 37]
Superconducting
8
2022
Oxford Quantum Circuits
OQC Toshiko[ 38]
Superconducting
32
2023
Quandela
Ascella
Photonics
N/A
99.6 (1 qubit) 93.8 (2 qubits) 86.0 (3 qubits)
6[ 39]
2022 [ 40]
QuTech at TU Delft
Spin-2
Semiconductor spin qubits
99 (average gate) 85 (readout)[ 41]
2
2020
QuTech at TU Delft
-
Semiconductor spin qubits
6[ 42]
September 2022
QuTech at TU Delft
Starmon-5
Superconducting
X configuration
97 (readout)[ 43]
5
2020
Quantinuum
H2[ 44]
Trapped ion
Racetrack, All-to-All
99.997 (1 qubit) 99.87 (2 qubit)
56[ 45] (earlier 32)
May 9, 2023
2,097,152[ 46]
Quantinuum
H1-1[ 47]
Trapped ion
15×15 (Circuit Size)
99.996 (1 qubit) 99.914 (2 qubit)
20
2022
1,048,576[ 48]
Quantinuum
H1-2 [ 47]
Trapped ion
All-to-All[ 24]
99.996 (1 qubit) 99.7 (2 qubit)
12
2022
4096[ 49]
Quantware
Soprano[ 50]
Superconducting
99.9 (single-qubit gates)
5
July 2021
Quantware
Contralto[ 51]
Superconducting
99.9 (single-qubit gates)
25
March 7, 2022 [ 52]
Quantware
Tenor[ 53]
Superconducting
64
February 23, 2023
Rigetti
Agave
Superconducting
N/A
96 (Single-qubit gates)
87 (Two-qubit gates)
8
June 4, 2018 [ 54]
Rigetti
Acorn
Superconducting transmon
N/A
98.63 (Single-qubit gates)
87.5 (Two-qubit gates)
19[ 55]
December 17, 2017
Rigetti
Aspen-1
Superconducting
N/A
93.23 (Single-qubit gates)
90.84 (Two-qubit gates)
16
November 30, 2018 [ 54]
Rigetti
Aspen-4
Superconducting
99.88 (Single-qubit gates)
94.42 (Two-qubit gates)
13
March 10, 2019
Rigetti
Aspen-7
Superconducting
99.23 (Single-qubit gates)
95.2 (Two-qubit gates)
28
November 15, 2019
Rigetti
Aspen-8
Superconducting
99.22 (Single-qubit gates)
94.34 (Two-qubit gates)
31
May 5, 2020
Rigetti
Aspen-9
Superconducting
99.39 (Single-qubit gates)
94.28 (Two-qubit gates)
32
February 6, 2021
Rigetti
Aspen-10
Superconducting
99.37 (Single-qubit gates)
94.66 (Two-qubit gates)
32
November 4, 2021
Rigetti
Aspen-11
Superconducting
Octagonal[ 24]
99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY)
40
December 15, 2021
Rigetti
Aspen-M-1
Superconducting transmon
Octagonal[ 24]
99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY)
80
February 15, 2022
8[ 24]
Rigetti
Aspen-M-2
Superconducting transmon
99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY)
80
August 1, 2022
Rigetti
Aspen-M-3
Superconducting transmon
N/A
99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY)
80[ 56]
December 2, 2022
Rigetti
Ankaa-2
Superconducting transmon
N/A
98 (Two-qubit gates)
84[ 57]
December 20, 2023
RIKEN
RIKEN[ 58]
Superconducting
N/A
N/A
53 effective (64 total)[ 59] [ 60]
March 27, 2023
N/A
SaxonQ
Princess
Nitrogen-vacancy center
4[ 61]
June 26, 2024
SpinQ
Triangulum
Nuclear magnetic resonance
3[ 62]
September 2021
USTC
Jiuzhang
Photonics
N/A
N/A
76[ 63] [ 64]
2020
USTC
Zuchongzhi
Superconducting
N/A
N/A
62[ 65]
2020
USTC
Zuchongzhi 2.1
Superconducting
lattice[ 66]
99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout)
66[ 67]
2021
USTC
Zuchongzhi 3.0[ 68]
Superconducting transmon
15 x 7
99.90 (Single-qubit gates) 99.62 (Two-qubit gates) 99.18 (Readout)
105
December 16, 2024
Xanadu
Borealis[ 69]
Photonics (Continuous-variable)
N/A
N/A
216[ 69]
2022 [ 69]
Xanadu
X8 [ 70]
Photonics (Continuous-variable)
N/A
N/A
8
2020
Xanadu
X12
Photonics (Continuous-variable)
N/A
N/A
12
2020 [ 70]
Xanadu
X24
Photonics (Continuous-variable)
N/A
N/A
24
2020 [ 70]
CAS
Xiaohong[ 71]
Superconducting
N/A
N/A
504[ 71]
2024
Annealing quantum processors
These QPUs are based on quantum annealing , not to be confused with digital annealing.[ 72]
Manufacturer
Name/Codename
/Designation
Architecture
Layout
Fidelity (%)
Qubits
Release date
D-Wave
D-Wave One (Rainier)
Superconducting
C4 = Chimera(4,4,4)[ 73] = 4×4 K4,4
N/A
128
May 11, 2011
D-Wave
D-Wave Two
Superconducting
C8 = Chimera(8,8,4)[ 73] = 8×8 K4,4
N/A
512
2013
D-Wave
D-Wave 2X
Superconducting
C12 = Chimera(12,12,4)[ 73] = 12×12 K4,4
N/A
1152
2015
D-Wave
D-Wave 2000Q
Superconducting
C16 = Chimera(16,16,4)[ 73] = 16×16 K4,4
N/A
2048
2017
D-Wave
D-Wave Advantage
Superconducting
Pegasus P16 [ 74]
N/A
5760
2020
D-Wave
D-Wave Advantage 2 [ 75] [ 76] [ 77] [ 78]
Superconducting[ 75] [ 76]
Zephyr Z15 [ 78] [ 79]
N/A
7440[ 80]
2024[ 75] [ 76] [ 77] [ 78] [ 79]
Analog quantum processors
These QPUs are based on analog Hamiltonian simulation.
Manufacturer
Name/Codename/Designation
Architecture
Layout
Fidelity (%)
Qubits
Release date
QuEra
Aquila
Neutral atoms
N/A
N/A
256[ 81]
November 2022
See also
References
^ Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv :2110.14108 [quant-ph ].
^ "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER" . AQT . Retrieved 21 Feb 2023 .
^ Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum . 2 (2): 020343. arXiv :2101.11390 . Bibcode :2021PRXQ....2b0343P . doi :10.1103/PRXQuantum.2.020343 . S2CID 231719119 .
^ "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128" . AQT . 8 February 2023. Retrieved 24 Feb 2023 .
^ Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits" . Nature Communications . 13 (1): 2779. arXiv :2108.04790 . Bibcode :2022NatCo..13.2779B . doi :10.1038/s41467-022-29977-z . PMC 9120523 . PMID 35589685 . S2CID 236965948 .
^ Atom Computing Previews an 1180 Qubit Neutral Atom Processor, Quantum Computing Report
^ a b c d Padavic-Callaghan, Karmela (December 9, 2023). "IBM unveils 1000-qubit computer". New Scientist . p. 13.
^ a b Wilkins, Alex (October 24, 2023). "Record-breaking quantum computer has more than 1000 qubits" . New Scientist . Retrieved 2024-01-01 .
^ a b c Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough" . Futurism . Retrieved 2017-10-18 .
^ Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy" . MIT Technology Review . Retrieved 2017-10-18 .
^ "A Preview of Bristlecone, Google's New Quantum Processor" , Research (World wide web log), Google, March 2018 .
^ Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor" . The Next Web . Retrieved 2018-06-27 .
^ Neven, Hartmut (9 December 2024). "Meet Willow, our state-of-the-art quantum chip" . Google . Retrieved 10 December 2024 .
^ a b "IBM Builds Its Most Powerful Universal Quantum Computing Processors" . IBM . 2017-05-17. Archived from the original on May 22, 2017. Retrieved 2017-10-18 .
^ a b "Quantum devices & simulators" . IBM Q . 2018-06-05. Retrieved 2019-03-29 .
^ a b "IBM Announces Advances to IBM Quantum Systems & Ecosystem" . 10 November 2017. Archived from the original on November 10, 2017. Retrieved 10 November 2017 .
^ a b c Brooks, Michael (January–February 2024). "Bring on the noise". MIT Technology Review . Vol. 127, no. 1. Cambridge, Massachusetts. p. 50.
^ a b "IBM's 'Condor' quantum computer has more than 1000 qubits" . New Scientist . Retrieved 2023-12-21 .
^ AbuGhanem, M. (2024). "IBM Quantum Computers: Evolution, Performance, and Future Directions". arXiv :2410.00916 [quant-ph ].
^ "IBM Quantum delivers on 2022 100x100 performance challenge | IBM Quantum Computing Blog" . www.ibm.com . Retrieved 2024-11-25 .
^ a b c d e f "IBM Q Experience" . IBM Q Experience . Retrieved 2020-01-04 .
^ a b c d e f g h i j k l m n o p "IBM Quantum" . IBM Quantum . Retrieved 2023-06-18 .
^ a b c d e "IBM Blog" . IBM Blog . Retrieved 2023-06-18 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering . 3 : 1– 19. arXiv :2203.03816 . doi :10.1109/TQE.2022.3184764 . ISSN 2689-1808 . S2CID 247315182 .
^ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech" . Intel Newsroom . 2017-10-10. Retrieved 2017-10-18 .
^ Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law" . CNBC . Retrieved 2017-10-18 .
^ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy" . 2018-01-09. Retrieved 2018-01-14 .
^ "Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing" . Intel Newsroom . Retrieved 2023-07-09 .
^ a b c "IonQ | Trapped Ion Quantum Computing" . IonQ . Retrieved 2023-05-02 .
^ a b Egan, Laird; Debroy, Dripto M.; Noel, Crystal; Risinger, Andrew; Zhu, Daiwei; Biswas, Debopriyo; Newman, Michael; Li, Muyuan; Brown, Kenneth R.; Cetina, Marko; Monroe, Christopher (2020). "Fault-Tolerant Operation of a Quantum Error-Correction Code". arXiv :2009.11482 [quant-ph ].
^ "The Power of Co-Design, Hermanni Heimonen, IQM" . Youtube . 2022-12-08. Retrieved 2023-06-09 .
^ "Finland's first 5-qubit quantum computer is now operational" . VTTresearch.com . 2022-12-08. Retrieved 2023-06-09 .
^
"Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues" . meetiqm.com . 2023-10-09.
^ "Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024" . quantumzeitgeist.com . 2023-10-10.
^ Pelegrí, G.; Daley, A. J.; Pritchard, J. D. (2022). "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage". Quantum Science and Technology . 7 (4): 045020. arXiv :2112.13025 . Bibcode :2022QS&T....7d5020P . doi :10.1088/2058-9565/ac823a . S2CID 245502083 .
^ "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR" (PDF) . M Squared . Retrieved 12 April 2023 .
^ "Lucy" . Oxford Quantum Circuits . 30 November 2021. Retrieved 20 Feb 2023 .
^ "OQC Toshiko" . Oxford Quantum Circuits . 24 November 2023. Retrieved 27 Nov 2023 .
^ Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv :2211.15626 [quant-ph ].
^ "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)" . Le Monde.fr . Le Monde. 22 November 2022.
^ "Spin-2" . Quantum Inspire . Retrieved 5 May 2021 .
^ "Six-qubit silicon quantum processor sets a record" . PhysicsWorld . 19 October 2022. Retrieved 2023-07-09 .
^ "Starmon-5" . Quantum Inspire . Retrieved 4 May 2021 .
^ "Quantinuum H2 Product Data Sheet" (PDF) .
^ "Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation" . www.quantinuum.com . Retrieved 2024-06-06 .
^ "System Model H2" . www.quantinuum.com . Retrieved 2024-10-10 .
^ a b "Quantinuum System Model H1 Product Data Sheet" (PDF) . Quantinuum . Retrieved 8 Jul 2023 .
^ "Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume" . www.quantinuum.com . Retrieved 2024-04-17 .
^ "Quantinuum Announces Quantum Volume 4096 Achievement" . Quantinuum . Retrieved 24 Feb 2023 .
^ "Soprano specs" . Quantware . Retrieved 1 Feb 2023 .
^ "Contralto specs" . Quantware . Retrieved 21 Feb 2023 .
^ "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU" . Quantware . Retrieved 21 Feb 2023 .
^ "Tenor specs" . Quantware . Retrieved 26 Feb 2023 .
^ a b "QPU" . Rigetti Computing . Archived from the original on 2019-05-16. Retrieved 2019-03-24 .
^ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2" . 2017-12-18. Retrieved 2018-03-21 .
^ "Aspen-M-3 Quantum Processor" . Retrieved 2023-02-20 .
^ Rigetti & Company LLC (2024-01-04). "Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs" . GlobeNewswire News Room (Press release). Retrieved 2024-01-23 .
^ "Japan's first homemade quantum computer goes online" . www.riken.jp . Retrieved 2024-01-25 .
^ "Japanese joint research group launches quantum computing cloud service" . Fujitsu Global . Retrieved 2024-01-25 .
^ "RIKEN and Fujitsu develop 64-qubit quantum computer" . www.riken.jp . Retrieved 2024-01-25 .
^ "All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ" . Retrieved 16 Jul 2024 .
^ "Triangulum3 qubits desktop NMR quantum computer" . AQT . Retrieved 24 Feb 2023 .
^ Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage' " . Nature . 588 (7838): 380. Bibcode :2020Natur.588..380B . doi :10.1038/d41586-020-03434-7 . PMID 33273711 .
^ Letzter, Rafi – Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world" . livescience.com . Retrieved 2020-12-19 . {{cite web }}
: CS1 maint: numeric names: authors list (link )
^ Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters . 127 (18): 180501. arXiv :2106.14734 . Bibcode :2021PhRvL.127r0501W . doi :10.1103/PhysRevLett.127.180501 . PMID 34767433 . S2CID 235658633 .
^ Zhu, Qingling; et al. (2021). "Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling". Science Bulletin . 67 (3): 240– 245. arXiv :2109.03494 . doi :10.1016/j.scib.2021.10.017 . PMID 36546072 . S2CID 237442167 .
^ Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui; Du, Yajie; Fan, Daojin; Gong, Ming; Guo, Cheng; Guo, Chu; Guo, Shaojun; Han, Lianchen (2021-10-25). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor" . Physical Review Letters . 127 (18): 180501. arXiv :2106.14734 . Bibcode :2021PhRvL.127r0501W . doi :10.1103/PhysRevLett.127.180501 . ISSN 0031-9007 . PMID 34767433 . S2CID 235658633 .
^ Gao, Dongxin; Fan, Daojin; Zha, Chen; Bei, Jiahao; Cai, Guoqing; Cai, Jianbing; Cao, Sirui; Zeng, Xiangdong; Chen, Fusheng; Chen, Jiang; Chen, Kefu; Chen, Xiawei; Chen, Xiqing; Chen, Zhe; Chen, Zhiyuan (16 Dec 2024). "Establishing a New Benchmark in Quantum Computational Advantage with 105-qubit Zuchongzhi 3.0 Processor". Quantum Physics . arXiv :2412.11924 .
^ a b c Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (June 2022). "Quantum computational advantage with a programmable photonic processor" . Nature . 606 (7912): 75– 81. Bibcode :2022Natur.606...75M . doi :10.1038/s41586-022-04725-x . ISSN 1476-4687 . PMC 9159949 . PMID 35650354 . S2CID 249276257 .
^ a b c "A new kind of quantum" . spie.org . Retrieved 2021-01-09 .
^ a b "China launches 504-qubit quantum chip, open to global users" . www.chinadaily.com.cn/ .
^ "Digital Annealer – Quantum Computing Technology" . Fujitsu . Retrieved 12 April 2023 .
^ a b c d Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv :1406.2741 [quant-ph ].
^ Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv :2003.00133 [quant-ph ].
^ a b c "D-Wave Announces 1,200+ Qubit Advantage2™ Prototype in New, Lower-Noise Fabrication Stack, Demonstrating 20x Faster Time-to-Solution on Important Class of Hard Optimization Problems" .
^ a b c "D-Wave Announces Availability of 1,200+ Qubit Advantage2™ Prototype in the Leap™ Quantum Cloud Service, Making its Most Performant System Available to Customers Today" .
^ a b "D-Wave Clarity Roadmap : 2023-2024" (PDF) . dwavesys.com . November 18, 2024. Retrieved November 18, 2024 . Advantage 2™ quantum system will incorporate a new qubit design that enables 20-way connectivity in a new topology. The Advantage 2 QPU will contain 7000+ qubits and make use of the latest improvements in quantum coherence in a multi-layer fabrication stack, further harnessing the quantum mechanical power of the system for finding better solutions, faster.
^ a b c McGeoch, Catherine; Farre, Pau; Boothby, Kelly (June 9, 2022). "The D-wave Advantage2 Prototype : Technical Report" (PDF) . Dwavesys.com . Retrieved November 11, 2024 .
^ a b "Ahead of the Game: D-Wave Delivers Prototype of Next-Generation Advantage2 Annealing Quantum Computer" .
^ https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
^ Lee, Jane (2 November 2022). "Boston-based quantum computer QuEra joins Amazon's cloud for public access". Reuters.