Eastin–Knill theorem

The Eastin–Knill theorem is a no-go theorem that states: "No quantum error correcting code can have a continuous symmetry which acts transversely on physical qubits".[1] In other words, no quantum error correcting code can transversely implement a universal gate set, where a transversal logical gate is one that can be implemented on a logical qubit by the independent action of separate physical gates on corresponding physical qubits.[citation needed]

In addition to investigating fault tolerant quantum computation, the Eastin–Knill theorem is also useful for studying quantum gravity via the AdS/CFT correspondence and in condensed matter physics via quantum reference frame[2] or many-body theory.[3]

The theorem is named after Bryan Eastin and Emanuel Knill, who published it in 2009.[1]

Description

Since quantum computers are inherently noisy, quantum error correcting codes are used to correct errors that affect information due to decoherence and dissipation. Decoding error corrected data in order to perform gates on the qubits makes it prone to errors. Fault tolerant quantum computation avoids this by performing gates on encoded data. Transversal gates, which perform a gate between two logical qubits each of which is encoded in N physical qubits by pairing up the physical qubits of each encoded qubit ("code block"), and performing independent gates on each pair, can be used to perform fault tolerant but not universal quantum computation because they guarantee that errors don't spread uncontrollably through the computation. This is because transversal gates ensure that each qubit in a code block is acted on by at most a single physical gate and each code block is corrected independently when an error occurs.

The Eastin–Knill theorem implies that a universal set like {H, S, CNOT, T } gates can't be implemented transversally. For example, the T gate can't be implemented transversely in the Steane code.[4] This calls for ways of circumventing Eastin–Knill in order to perform fault tolerant quantum computation.

Approximate Eastin–Knill theorem

The approximate version of the Eastin–Knill theorem states: "If a code admits a continuous symmetry pertaining to a Lie group and corrects erasure with fixed accuracy, then for each logical qubit, a number of physical qubits per subsystem that is inversely proportional to the error parameter is needed".[2][3][5] The approximate version of the Eastin–Knill theorem is more robust than the original because it explains why it's impossible to have continuous symmetries for transversal gates on the microscopic scale while also explaining how it's possible to have continuous symmetries for transversal gates on the macroscopic scale.

Circumventing the theorem

The Eastin–Knill theorem does not prohibit protocols that provide fault tolerant quantum computation. Some methods of getting around Eastin–Knill are:

References

  1. ^ a b Eastin, Bryan; Knill, Emanuel (2009). "Restrictions on Transversal Encoded Quantum Gate Sets". Physical Review Letters. 102 (11): 110502. arXiv:0811.4262. Bibcode:2009PhRvL.102k0502E. doi:10.1103/PhysRevLett.102.110502. PMID 19392181. S2CID 44457708.
  2. ^ a b c Woods, Mischa; Alhambra, Alvaro M. (2020). "Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames". Quantum. 4: 245. arXiv:1902.07725. Bibcode:2020Quant...4..245W. doi:10.22331/q-2020-03-23-245. S2CID 119302752.
  3. ^ a b c Faist, Philippe; Nezami, Sepehr; V. Albert, Victor; Salton, Grant; Pastawski, Fernando; Hayden, Patrick; Preskill, John (2020). "Continuous Symmetries and Approximate Quantum Error Correction". Physical Review X. 10 (4): 041018. arXiv:1902.07714. Bibcode:2020PhRvX..10d1018F. doi:10.1103/PhysRevX.10.041018. S2CID 119207861.
  4. ^ Campbell, Earl T.; Terhal, Barbara M.; Vuillot, Christophe (2016). "Roads towards fault-tolerant universal quantum computation". Nature. 549 (7671): 172–179. arXiv:1612.07330. Bibcode:2017Natur.549..172C. doi:10.1038/nature23460. PMID 28905902. S2CID 4446310.
  5. ^ a b Yang, Yuxiang; Mo, Yin; Renes, Joseph M.; Chiribella, Giulio; Woods, Mischa (2022). "Optimal universal quantum error correction via bounded reference frames". Physical Review Research. 4 (2): 023107. arXiv:2007.09154. Bibcode:2022PhRvR...4b3107Y. doi:10.1103/PhysRevResearch.4.023107. S2CID 244488748.
  6. ^ Duclos-Cianci, Guillaume; Poulin, David (2014). "Reducing the quantum computing overhead with complex gate distillation". Physical Review A. 91 (4): 042315. arXiv:1309.3310. doi:10.1103/PhysRevA.91.042315. S2CID 73589915.
  7. ^ Paetznick, Adam; Reichardt, Ben W. (2014). "Universal fault-tolerant quantum computation with only transversal gates and error correction". Physical Review Letters. 111 (9): 090505. arXiv:1309.3310. doi:10.1103/PhysRevLett.111.090505. PMID 24033013. S2CID 20659050.
  8. ^ Shor, Peter (1996). "Fault-tolerant quantum computation". Proceedings of 37th Conference on Foundations of Computer Science. Vol. 102. pp. 56–65. doi:10.1109/SFCS.1996.548464. ISBN 978-0-8186-7594-2. S2CID 7508572.
  9. ^ Gottesman, Daniel; Chuang, Isaac L. (1999). "Quantum Teleportation is a Universal Computational Primitive". Nature. 402 (6760): 390–393. arXiv:quant-ph/9908010. Bibcode:1999Natur.402..390G. doi:10.1038/46503. S2CID 4411647.
  10. ^ Bravyi, Sergey; Kitaev, Alexei (2005). "Universal quantum computation with ideal Clifford gates and noisy ancillas". Physical Review A. 71 (2): 022316. arXiv:quant-ph/0403025. Bibcode:2005PhRvA..71b2316B. doi:10.1103/PhysRevA.71.022316. S2CID 17504370.
  11. ^ Jochym-O’Connor, Tomas; Laflamme, Raymond (2013). "Using Concatenated Quantum Codes for Universal Fault-Tolerant Quantum Gates". Physical Review Letters. 112 (1): 010505. arXiv:quant-ph/0403025. doi:10.1103/PhysRevLett.112.010505. PMID 24483879. S2CID 23069274.
  12. ^ Yoder, Theodore J.; Takagi, Ryuji (2016). "Universal fault-tolerant gates on concatenated stabilizer codes". Physical Review X. 6 (3): 090505. arXiv:1603.03948. Bibcode:2016PhRvX...6c1039Y. doi:10.1103/PhysRevX.6.031039. S2CID 39022969.
  13. ^ Levin, Michael A.; Wen, Xiao-Gang (2004). "String-net condensation: A physical mechanism for topological phases". Physical Review B. 71 (4): 045110. arXiv:cond-mat/0404617. doi:10.1103/PhysRevB.71.045110. S2CID 51962817.

Read other articles:

British rock band For other uses, see Dire Straits (disambiguation). Dire StraitsDire Straits performing in Drammenshallen, Norway, 1985Background informationAlso known asCafé Racers[1]OriginLondon, EnglandGenres Roots rock blues rock pub rock Years active 1977 (1977)–1988 (1988) 1990 (1990)–1995 (1995) Labels Vertigo Mercury Warner Bros. Past members Mark Knopfler David Knopfler John Illsley Pick Withers Alan Clark Hal Lindes Terry Williams Guy Fletcher Jack ...

 

Australian baseball player (born 1977) For other people named Glenn Williams, see Glenn Williams (disambiguation). Baseball player Glenn WilliamsWilliams in 2007Third basemanBorn: (1977-07-18) 18 July 1977 (age 46)Gosford, New South WalesBatted: SwitchThrew: RightMLB debut7 June, 2005, for the Minnesota TwinsLast MLB appearance28 June, 2005, for the Minnesota TwinsMLB statisticsBatting average.425Home runs0Runs batted in3 Teams Minnesota Twins (2005) Glenn D...

 

الحزب الوطنى الفاشى البلد إيطاليا التأسيس الاسم المحلي بارتيتو ناسيونالي فاسيستا تاريخ التأسيس 9 نوڤمبر 1921 تاريخ الحل 27 يوليو 1943 الحزب الثوري الفاشي الحزب الجمهوري الفاشي  [لغات أخرى]‏ اندمج في القتال الإيطالي الفاشي,الرابطة القومية الإيطالية الشخصيات دوتشي بيني...

Гам Річка Гам в коммуні Єнфу (Yên Phú) округу Бакме (Bắc Mê) під час накоплення води у ГЕС Туєнкуанг (2007)22°21′25″ пн. ш. 105°23′46″ сх. д. / 22.35716100002778006° пн. ш. 105.39615300002778042° сх. д. / 22.35716100002778006; 105.39615300002778042Витік ГуансіГирло ЛоКраїни: В'єтнам,  КНРДовжин

 

Nordhofen ist ein Ortsteil der Gemeinde Deisenhausen im schwäbischen Landkreis Günzburg (Bayern). Das Dorf liegt circa einen Kilometer nördlich von Deisenhausen. Baudenkmäler Kapelle St. Leonhard Siehe auch: Liste der Baudenkmäler in Nordhofen Kapelle St. Leonhard Literatur Bernt von Hagen, Angelika Wegener-Hüssen: Landkreis Günzburg (= Bayerisches Landesamt für Denkmalpflege [Hrsg.]: Denkmäler in Bayern. Band VII.91/1). Karl M. Lipp Verlag, München 2004, ISBN 3-87490-...

 

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يوليو 2023) زاريتان (مدينة)تقسيم إداريالبلد الأردن تعديل - تعديل مصدر...

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2010年6月) 独自研究が含まれているおそれがあります。(2010年6月) 雑多な内容を羅列した節があります。(2010年6月)出典検索?: 花より男子 – ニュース · 書籍 · スカラー...

 

Bài viết này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp cải thiện bài viết hoặc viết lại để hành văn tiếng Việt được tự nhiên hơn và đúng ngữ pháp. Chú ý: Những bản dịch rõ ràng là dịch máy hoặc có chất lượng kém, KHÔNG dùng bản mẫu này, vui lòng đặt {{thế:clk|dịch máy chất lư...

 

أنغارسك    علم شعار الإحداثيات 52°34′00″N 103°55′00″E / 52.566666666667°N 103.91666666667°E / 52.566666666667; 103.91666666667  تاريخ التأسيس 1948  تقسيم إداري  البلد روسيا[3] الاتحاد السوفيتي[1][2]  خصائص جغرافية  المساحة 294 كيلومتر مربع  ارتفاع 425 متر  عدد السكان ...

Economy of NigeriaLagos, the financial centre of NigeriaCurrencyNigerian naira (NGN, ₦)Fiscal year1 April – 31 March[1]Trade organisationsAU, AfCFTA, ECOWAS, WTOCountry group Developing/Emerging[2] Lower-middle income economy[3] StatisticsPopulation 223,804,632 (2019)[4]GDP $489.80 billion (nominal, 2023)[5] $1.275 trillion (PPP, 2023)[6] GDP rank 39th (nominal, 2023) 27th (PPP, 2023) GDP growth 2.2% (2019)[7] -3.0% (2020 est.)[7...

 

Filipino businessman In this Philippine name, the middle name or maternal family name is Lim and the surname or paternal family name is Gokongwei. In this Chinese name, the family name is 吳 (Gô͘). John Gokongwei吳奕輝BornJohn LIM Gokongwei, Jr.(1926-08-11)11 August 1926Xiamen, Republic of ChinaDied9 November 2019(2019-11-09) (aged 93)Manila, PhilippinesNationalityFilipinoEducationDe La Salle University (MBA)Occupation(s)Businessman, investor, philanthropist, bankerKnown&#...

 

Provincial park of British Columbia Roche Lake Provincial ParkIUCN category II (national park)Horseshoe Lake is one of several lakes in Roche Lake PPLocationBritish Columbia, CanadaNearest cityKamloopsCoordinates50°28′00″N 120°09′00″W / 50.46667°N 120.15000°W / 50.46667; -120.15000Governing bodyBC Parks Roche Lake Provincial Park is a provincial park in British Columbia, Canada, located northeast of Stump Lake in the Nicola Country of that provinc...

Battle of the First Carnatic War Battle of AdyarPart of Carnatic Wars First Carnatic WarDate24 October 1746LocationAdyar riverResult French victoryTerritorialchanges Nawab of Arcot defeatedBelligerents Mughal Empire Nawab of Arcot Kingdom of France French East India CompanyCommanders and leaders Anwaruddin Khan Mahfuz Khan Louis ParadisStrength 10,000 infantry and cavalry 350 French soldiers700 French-trained Indian SepoysCasualties and losses 300 2 Sepoys killedvteFirst Carnatic War Negapata...

 

Untuk stasiun, lihat Stasiun Warung Bandrek. BandrekBandrek di Bandung dengan taburan kelapaSajianMinumanTempat asalIndonesiaDaerahJawa BaratSuhu penyajianPanasBahan utamajahe, gula merah, kayu manis, rempah-rempah (terkadang ditambahkan susu kental manis)  Media: Bandrek Bandrek (Sunda: ᮘᮔ᮪ᮓᮢᮦᮊ᮪, translit. Bandrék) adalah minuman tradisional khas Sunda yang dikonsumsi untuk meningkatkan kehangatan tubuh. Minuman ini biasanya dihidangkan pada cuaca dingin, s...

 

Designer and engineer Haiyan ZhangHaiyan Zhang discusses her Japan Geigermap in 2012Alma materMonash UniversityInteraction Design Institute IvreaEmployerMicrosoft ResearchKnown forThe Emma WatchInnovations in Technology Making Haiyan Zhang is a designer and engineer. She is Director of Innovation at Microsoft Research and Technical Advisor to Lab Director, Christopher Bishop. She appeared on the BBC show Big Life Fix. Education Zhang was born in China, and migrated to Australia with...

8/9th-century Japanese Buddhist monk; founder of the Tendai sect Saichō (最澄)Painting of SaichōTitleFounder of Tendai BuddhismPersonalBornSeptember 15, 767DiedJune 26, 822 (age 54)ReligionBuddhismSchoolTendaiSenior postingTeacherGyōhyō (行表)SuccessorGishin (義真) Saichō (最澄, September 15, 767 – June 26, 822) was a Japanese Buddhist monk credited with founding the Tendai school of Buddhism based on the Chinese Tiantai school he was exposed to during his trip to Tang Chin...

 

Una Xerox 820. El Xerox 820 era un computador de escritorio de 8 bits vendido por Xerox. El computador tenía una unidad de disco flexible para almacenamiento masivo, y usaba el sistema operativo CP/M. El diseño de la tarjeta del microprocesador fue una variante licenciada del computador Bigboard. Usaba un procesador de Zilog Z80 con una velocidad de 2.5 MHz, y alardeaba de sus 64 KB de RAM. Luego vino el Xerox 820-II, ofreciendo un procesador Z80 de 4.0 MHz. Una versión actualizada de este...

 

Cattedrale di Sant'AlessandroFacciataStato Italia RegioneLombardia LocalitàBergamo IndirizzoPiazza Duomo Coordinate45°42′11.92″N 9°39′46.44″E / 45.70331°N 9.6629°E45.70331; 9.6629Coordinate: 45°42′11.92″N 9°39′46.44″E / 45.70331°N 9.6629°E45.70331; 9.6629 Religionecattolica di rito romano Titolaresant'Alessandro di Bergamo Diocesi Bergamo ArchitettoFilarete ed altri Stile architettoniconeoclassico (esterno)barocco (interno) Inizio ...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of programs broadcast by Cartoon Network Latin America – news · newspapers · books · scholar · JS...

 

Podcast technology company MegaphoneIndustryRadioGenrePodcastsFoundedFebruary 2015 (2015-02)[1]FoundersAndy Bowers, Brendan MonaghanHeadquartersReston, Virginia, U.S.Key peopleBrendan Monaghan (CEO)[2]Andy Bowers (CCO)[2]Matt Turck (CRO)[3]Jason Cox (CTO)[4]OwnerSpotifyNumber of employees25[5] (2016)Websitemegaphone.fm Megaphone (formerly Panoply Media)[6] is a Software as a service (SaaS) business owned by Spotify. The co...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!