Another group of Deninger's papers studies L-functions and their special values. A classical example of an L-function is the Riemann zeta function ζ(s), for which formulas such as
are known since Euler. In a landmark paper, Beilinson (1984) had proposed a set of far-reaching conjectures describing the special values of L-functions, i.e., the values of L-functions at integers. In very rough terms, Beilinson's conjectures assert that for a smooth projective algebraic varietyX over Q, motivic cohomology of X should be closely related to Deligne cohomology of X. In addition, the relation between these two cohomology theories should explain, according to Beilinson's conjecture, the pole orders and the values of
L(hn(X), s)
at integers s. Bloch and Beilinson proved essential parts of this conjecture for h1(X) in the case where X is an elliptic curve with complex multiplication and s=2. In 1988, Deninger & Wingberg gave an exposition of that result. In 1989 and 1990, Deninger extended this result to certain elliptic curves considered by Shimura, at all s≥2. Deninger & Nart (1995) expressed the height pairing, a key ingredient of Beilinson's conjecture, as a natural pairing of Ext-groups in a certain category of motives. In 1995, Deninger studied Massey products in Deligne cohomology and conjectured therefrom a formula for the special value for the L-function of an elliptic curve at s=3, which was subsequently confirmed by Goncharov (1996). As of 2018, Beilinson's conjecture is still wide open, and Deninger's contributions remain some of the few cases where Beilinson's conjecture has been successfully attacked (surveys on the topic include Deninger & Scholl (1991), Nekovář (1994)).
for each prime number p. In order to obtain a functional equation for ζ(s), one needs to multiply them with an additional term involving the Gamma function:
More general L-functions are also defined by Euler products, involving, at each finite place, the determinant of the Frobenius endomorphism acting on l-adic cohomology of some varietyX / Q, while the Euler factor for the infinite place are, according to Serre, products of Gamma functions depending on the Hodge structures attached to X / Q. Deninger (1991) expressed these Γ-factors in terms of regularized determinants and moved on, in 1992 and in greater generality in 1994, to unify the Euler factors of L-functions at both finite and infinite places using regularized determinants. For example, for the Euler factors of the Riemann zeta-function this uniform description reads
Here p is either a prime number or infinity, corresponding to the non-Archimedean Euler factors and the Archimedean Euler factor respectively, and Rp is the space of finite real valued Fourier series on R/log(p)Z for a prime number p, and R∞ = R[exp(−2y)]. Finally, Θ is the derivative of the R-action given by shifting such functions.
Deninger (1994) also exhibited a similar unifying approach for ε-factors (which express the ratio between completed L-functions at s and at 1−s).
The arithmetic site
These results led Deninger to propose a program concerning the existence of an "arithmetic site" Y associated to the compactification of SpecZ. Among other properties, this site would be equipped with an action of R, and each prime number p would correspond to a closed orbit of the R-action of length log(p). Moreover, analogies between formulas in analytic number theory and dynamics on foliated spaces led Deninger to conjecture the existence of a foliation on this site. Moreover, this site is supposed to be endowed with an infinite-dimensional cohomology theory such that the L-function of a motive M is given by
Here M is a motive, such as the motives hn(X) occurring in Beilinson's conjecture, and F(M) is conceived to be the sheaf on Y attached to the motive M. The operator Θ is the infinitesimal generator of the flow given by the R-action. The Riemann hypothesis would be, according to this program, a consequence of properties parallel to the positivity of the intersection pairing in Hodge theory. A version of the Lefschetz trace formula on this site, which would be part of this conjectural setup, has been proven by other means by Deninger (1993). In 2010, Deninger proved that classical conjectures of Beilinson and Bloch concerning the intersection theory of algebraic cycles would be further consequences of his program.
In Deninger & Werner (2005) established a p-adic analogue thereof: for a smooth projective algebraic curve over Cp, obtained by base change from , they constructed an action of the etale fundamental group π1(X) on the fibers on certain vector bundles, including those of degree 0 and having potentially strongly semistable reduction. In another paper of 2005, they related the resulting representations of the fundamental group of the curve X with representations of the Tate module of the Jacobian variety of X. In 2007 and 2010 they continued this work by showing that such vector bundles form a Tannakian category which amounts to identifying this class of vector bundles as a category of representations of a certain group.
Foliations and the Heisenberg group
In several joint papers, Deninger and Wilhelm Singhof studied quotients of the n-dimensional Heisenberg groupH by the standard lattice consisting of integer-valued matrices,
The classical fact from Hodge theory that any cohomology class on a Kähler manifold admits a unique harmonic had been generalized by Álvarez López & Kordyukov (2001) to Riemannian foliations. Deninger & Singhof (2001) show that foliations on the above space X, which satisfy only slightly weaker conditions, do not admit such Hodge theoretic properties. In another joint paper from 2001, they established a dynamical Lefschetz trace formula: it relates the trace of an operator on harmonic forms the local traces appearing at the closed orbits (on certain foliated spaces with an R-action). This result serves as a corroboration of Deninger's program mentioned above in the sense that it verifies a prediction made by this program on the analytic side, i.e., the one concerning dynamics on foliated spaces.
Entropy and Mahler measures
Another group of Deninger's papers revolves around the space
Moreover, it had been known that Mahler measures of certain polynomials were known to be expressible in terms of special values of certain L-functions. In 1997, Deninger observed that the integrand in the definition of the Mahler measure has a natural explanation in terms of Deligne cohomology. Using known cases of the Beilinson conjecture, he deduced that m(f) is the image of the symbol {f, t1, ..., tn} under the Beilinson regulator, where the variety is the complement in the n-dimensional torus of the zero set of f. This led to a conceptual explanation for the afore-mentioned formulas for Mahler measures. Besser & Deninger (1999) and Deninger later in 2009 carried over these ideas to the p-adic world, by replacing the Beilinson regulator map to Deligne cohomology by a regulator map to syntomic cohomology, and the logarithm appearing in the definition of the entropy by a p-adic logarithm.
In 2006 and 2007, Deninger and Klaus Schmidt pushed the parallel between entropy and Mahler measures beyond abelian groups, namely residually finite, countable discrete amenable groups Γ. They showed that the Γ-action on Xf is expansive if and only if f is invertible in the L1-convolution algebra of Γ. Moreover, the logarithm of the Fuglede-Kadison determinant on the von Neumann algebra NΓ associated to Γ (which replaces the Mahler measure for Zn) agrees with the entropy of the above action.
Witt vectors
Joachim Cuntz and Deninger worked together on Witt vectors. In two papers around 2014, they simplified the theory by giving a presentation of the ring of Witt vectors in terms of a completion of the monoid algebraZR. This approach avoids the universal polynomials used in the classical definition of the addition of Witt vectors.
Deninger, Christopher; Wingberg, Kay (1986), "Artin–Verdier duality for n-dimensional local fields involving higher algebraic K-sheaves", Journal of Pure and Applied Algebra, 43 (3): 243–255, doi:10.1016/0022-4049(86)90066-6, MR0868985
Deninger, Christopher (1987), "Duality in the étale cohomology of one-dimensional proper schemes and generalizations", Mathematische Annalen, 277 (3): 529–541, doi:10.1007/BF01458330, MR0891590, S2CID120941469
L-functions and Beilinson's conjecture
Deninger, Christopher; Wingberg, Kay (1988), "On the Beilinson conjectures for elliptic curves with complex multiplication", Beilinson's conjectures on special values of L-functions, Perspect. Math., vol. 4, Boston, MA: Academic Press, MR0944996
Deninger, Christopher (1990), "Higher regulators and Hecke L-series of imaginary quadratic fields. II", Annals of Mathematics, Second Series, 132 (1): 131–158, doi:10.2307/1971502, JSTOR1971502, MR1059937
Deninger, Christopher; Scholl, Anthony J. (1991), "The Beĭlinson conjectures", L-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, pp. 173–209, doi:10.1017/CBO9780511526053.007, ISBN9780521386197, MR1110393
Deninger, Christopher (1994a), "Motivic ε-factors at infinity and regularized dimensions", Indag. Math., New Series, 5 (4): 403–409, doi:10.1016/0019-3577(94)90015-9, MR1307961
Deninger, Christopher (1994b), "Motivic L-functions and regularized determinants", Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Providence, RI: Amer. Math. Soc., MR1265547
Deninger, Christopher (1994c), "Evidence for a cohomological approach to analytic number theory", First European Congress of Mathematics, Vol. I (Paris, 1992), Progr. Math., vol. 119, Birkhäuser, Basel, pp. 491–510, MR1341834
Deninger, Christopher; Nart, Enric (1995), "On Ext2 of motives over arithmetic curves", Amer. J. Math., 117 (3): 601–625, doi:10.2307/2375082, JSTOR2375082, MR1333938
Deninger, Christopher (1998), "Some analogies between number theory and dynamical systems on foliated spaces", Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Documenta Mathematica (Extra Vol. I), pp. 163–186, MR1648030
Deninger, Christopher (2010), "The Hilbert-Polya strategy and height pairings", Casimir force, Casimir operators and the Riemann hypothesis, Walter de Gruyter, Berlin, pp. 275–283, MR2777722
Deninger, Christopher; Werner, Annette (2007), "On Tannaka duality for vector bundles on p-adic curves", Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, pp. 94–111, MR2187151
Deninger, Christopher; Werner, Annette (2010), "Vector bundles on p-adic curves and parallel transport II", Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Adv. Stud. Pure Math., vol. 58, pp. 1–26, doi:10.2969/aspm/05810001, ISBN978-4-86497-008-2, MR2676155
The Heisenberg group, Lie algebras, and foliations
Deninger, Christopher; Singhof, Wilhelm (2001b), "A note on dynamical trace formulas", Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999), Contemp. Math., vol. 290, AMS, pp. 41–55, doi:10.1090/conm/290/04572, ISBN9780821820797, MR1868467
Entropy
Deninger, Christopher (1997), "Deligne periods of mixed motives, K-theory and the entropy of certain Zn-actions", Journal of the American Mathematical Society, 10 (2): 259–281, doi:10.1090/S0894-0347-97-00228-2, MR1415320
Deninger, Christopher; Schmidt, Klaus (2007), "Expansive algebraic actions of discrete residually finite amenable groups and their entropy", Ergodic Theory and Dynamical Systems, 27 (3): 769–786, arXiv:math/0605723, doi:10.1017/S0143385706000939, MR2322178, S2CID12803685
Besser, Amnon; Deninger, Christopher (1999), "p-adic Mahler measures", Journal für die reine und angewandte Mathematik, 1999 (517): 19–50, doi:10.1515/crll.1999.093, MR1728549
Álvarez López, Jesús; Kordyukov, Yuri A. (2001), "Long time behavior of leafwise heat flow for Riemannian foliations", Compositio Mathematica, 125 (2): 129–153, doi:10.1023/A:1002492700960, MR1815391
Beilinson, A. A. (1984), "Higher regulators and values of L-functions", Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Moscow: Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., MR0760999