It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points. It has also turned out to be a central theme in algebraic number theory, allowing some features of the theory of cyclotomic fields to be carried over to wider areas of application. David Hilbert is said to have remarked that the theory of complex multiplication of elliptic curves was not only the most beautiful part of mathematics but of all science.[2]
Example of the imaginary quadratic field extension
Consider an imaginary quadratic field .
An elliptic function is said to have complex multiplication if there is an algebraic relation between and for all in .
Conversely, Kronecker conjectured – in what became known as the Kronecker Jugendtraum – that every abelian extension of could be obtained by the (roots of the) equation of a suitable elliptic curve with complex multiplication. To this day this remains one of the few cases of Hilbert's twelfth problem which has actually been solved.
An example of an elliptic curve with complex multiplication is
where Z[i] is the Gaussian integer ring, and θ is any non-zero complex number. Any such complex torus has the Gaussian integers as endomorphism ring. It is known that the corresponding curves can all be written as
for some , which demonstrably has two conjugate order-4 automorphisms sending
More generally, consider the lattice Λ, an additive group in the complex plane, generated by . Then we define the Weierstrass function of the variable in as follows:
and
Let be the derivative of . Then we obtain an isomorphism of complex Lie groups:
from the complex torus group to the projective elliptic curve defined in homogeneous coordinates by
and where the point at infinity, the zero element of the group law of the elliptic curve, is by convention taken to be .
If the lattice defining the elliptic curve is actually preserved under multiplication by (possibly a proper subring of) the ring of integers of , then the ring of analytic automorphisms of turns out to be isomorphic to this (sub)ring.
When the field of definition is a finite field, there are always non-trivial endomorphisms of an elliptic curve, coming from the Frobenius map, so every such curve has complex multiplication (and the terminology is not often applied). But when the base field is a number field, complex multiplication is the exception. It is known that, in a general sense, the case of complex multiplication is the hardest to resolve for the Hodge conjecture.
Indeed, let K be an imaginary quadratic field with class field H. Let E be an elliptic curve with complex multiplication by the integers of K, defined over H. Then the maximal abelian extension of K is generated by the x-coordinates of the points of finite order on some Weierstrass model for E over H.[4]
Many generalisations have been sought of Kronecker's ideas; they do however lie somewhat obliquely to the main thrust of the Langlands philosophy, and there is no definitive statement currently known.
is an almost integer, in that it is very close to an integer.[6] This remarkable fact is explained by the theory of complex multiplication, together with some knowledge of modular forms, and the fact that
Here satisfies α2 = α − 41. In general, S[α] denotes the set of all polynomial expressions in α with coefficients in S, which is the smallest ring containing α and S. Because α satisfies this quadratic equation, the required polynomials can be limited to degree one.
The points of the upper half-plane τ which correspond to the period ratios of elliptic curves over the complex numbers with complex multiplication are precisely the imaginary quadratic numbers.[7] The corresponding modular invariantsj(τ) are the singular moduli, coming from an older terminology in which "singular" referred to the property of having non-trivial endomorphisms rather than referring to a singular curve.[8]
The modular functionj(τ) is algebraic on imaginary quadratic numbers τ:[9] these are the only algebraic numbers in the upper half-plane for which j is algebraic.[10]
If Λ is a lattice with period ratio τ then we write j(Λ) for j(τ). If further Λ is an ideal a in the ring of integers OK of a quadratic imaginary field K then we write j(a) for the corresponding singular modulus. The values j(a) are then real algebraic integers, and generate the Hilbert class fieldH of K: the field extension degree [H:K] = h is the class number of K and the H/K is a Galois extension with Galois group isomorphic to the ideal class group of K. The class group acts on the values j(a) by [b] : j(a) → j(ab).
In particular, if K has class number one, then j(a) = j(O) is a rational integer: for example, j(Z[i]) = j(i) = 1728.
^Weisstein, Eric W."Transcendental Number". MathWorld. gives , based on
Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.
Borel, A.; Chowla, S.; Herz, C. S.; Iwasawa, K.; Serre, J.-P. Seminar on complex multiplication. Seminar held at the Institute for Advanced Study, Princeton, N.J., 1957–58. Lecture Notes in Mathematics, No. 21 Springer-Verlag, Berlin-New York, 1966
Shimura, Goro (1971). Introduction to the arithmetic theory of automorphic functions. Publications of the Mathematical Society of Japan. Vol. 11. Tokyo: Iwanami Shoten. Zbl0221.10029.