Ext functor

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In the special case of abelian groups, Ext was introduced by Reinhold Baer (1934). It was named by Samuel Eilenberg and Saunders MacLane (1942), and applied to topology (the universal coefficient theorem for cohomology). For modules over any ring, Ext was defined by Henri Cartan and Eilenberg in their 1956 book Homological Algebra.[1]

Definition

Let be a ring and let be the category of modules over . (One can take this to mean either left -modules or right -modules.) For a fixed -module , let for in . (Here is the abelian group of -linear maps from to ; this is an -module if is commutative.) This is a left exact functor from to the category of abelian groups , and so it has right derived functors . The Ext groups are the abelian groups defined by

for an integer i. By definition, this means: take any injective resolution

remove the term B, and form the cochain complex:

For each integer i, Exti
R
(A, B) is the cohomology of this complex at position i. It is zero for i negative. For example, Ext0
R
(A, B) is the kernel of the map HomR(A, I0) → HomR(A, I1), which is isomorphic to HomR(A, B).

An alternative definition uses the functor G(A)=HomR(A, B), for a fixed R-module B. This is a contravariant functor, which can be viewed as a left exact functor from the opposite category (R-Mod)op to Ab. The Ext groups are defined as the right derived functors RiG:

That is, choose any projective resolution

remove the term A, and form the cochain complex:

Then Exti
R
(A, B) is the cohomology of this complex at position i.

One may wonder why the choice of resolution has been left vague so far. In fact, Cartan and Eilenberg showed that these constructions are independent of the choice of projective or injective resolution, and that both constructions yield the same Ext groups.[2] Moreover, for a fixed ring R, Ext is a functor in each variable (contravariant in A, covariant in B).

For a commutative ring R and R-modules A and B, Exti
R
(A, B) is an R-module (using that HomR(A, B) is an R-module in this case). For a non-commutative ring R, Exti
R
(A, B) is only an abelian group, in general. If R is an algebra over a ring S (which means in particular that S is commutative), then Exti
R
(A, B) is at least an S-module.

Properties of Ext

Here are some of the basic properties and computations of Ext groups.[3]

  • Ext0
    R
    (A, B) ≅ HomR(A, B) for any R-modules A and B.
  • The converses also hold:
    • If Ext1
      R
      (A, B) = 0 for all B, then A is projective (and hence Exti
      R
      (A, B) = 0 for all i > 0).
    • If Ext1
      R
      (A, B) = 0 for all A, then B is injective (and hence Exti
      R
      (A, B) = 0 for all i > 0).
  • for all i ≥ 2 and all abelian groups A and B.[4]
  • Generalizing the previous example, for all i ≥ 2 if R is a principal ideal domain.
  • If R is a commutative ring and u in R is not a zero divisor, then
for any R-module B. Here B[u] denotes the u-torsion subgroup of B, {xB: ux = 0}. Taking R to be the ring of integers, this calculation can be used to compute for any finitely generated abelian group A.
  • Generalizing the previous example, one can compute Ext groups when the first module is the quotient of a commutative ring by any regular sequence, using the Koszul complex.[5] For example, if R is the polynomial ring k[x1,...,xn] over a field k, then Ext*
    R
    (k,k) is the exterior algebra S over k on n generators in Ext1. Moreover, Ext*
    S
    (k,k) is the polynomial ring R; this is an example of Koszul duality.
  • By the general properties of derived functors, there are two basic exact sequences for Ext.[6] First, a short exact sequence 0 → KLM → 0 of R-modules induces a long exact sequence of the form
for any R-module A. Also, a short exact sequence 0 → KLM → 0 induces a long exact sequence of the form
for any R-module B.
  • Ext takes direct sums (possibly infinite) in the first variable and products in the second variable to products.[7] That is:

Ext and extensions

Equivalence of extensions

The Ext groups derive their name from their relation to extensions of modules. Given R-modules A and B, an extension of A by B is a short exact sequence of R-modules

Two extensions

are said to be equivalent (as extensions of A by B) if there is a commutative diagram:

Note that the Five lemma implies that the middle arrow is an isomorphism. An extension of A by B is called split if it is equivalent to the trivial extension

There is a one-to-one correspondence between equivalence classes of extensions of A by B and elements of Ext1
R
(A, B).[9] The trivial extension corresponds to the zero element of Ext1
R
(A, B).

The Baer sum of extensions

The Baer sum is an explicit description of the abelian group structure on Ext1
R
(A, B), viewed as the set of equivalence classes of extensions of A by B.[10] Namely, given two extensions

and

first form the pullback over ,

Then form the quotient module

The Baer sum of E and E′ is the extension

where the first map is and the second is .

Up to equivalence of extensions, the Baer sum is commutative and has the trivial extension as identity element. The negative of an extension 0 → BEA → 0 is the extension involving the same module E, but with the homomorphism BE replaced by its negative.

Construction of Ext in abelian categories

Nobuo Yoneda defined the abelian groups Extn
C
(A, B) for objects A and B in any abelian category C; this agrees with the definition in terms of resolutions if C has enough projectives or enough injectives. First, Ext0
C
(A,B) = HomC(A, B). Next, Ext1
C
(A, B) is the set of equivalence classes of extensions of A by B, forming an abelian group under the Baer sum. Finally, the higher Ext groups Extn
C
(A, B) are defined as equivalence classes of n-extensions, which are exact sequences

under the equivalence relation generated by the relation that identifies two extensions

if there are maps for all m in {1, 2, ..., n} so that every resulting square commutes that is, if there is a chain map which is the identity on A and B.

The Baer sum of two n-extensions as above is formed by letting be the pullback of and over A, and be the pushout of and under B.[11] Then the Baer sum of the extensions is

The derived category and the Yoneda product

An important point is that Ext groups in an abelian category C can be viewed as sets of morphisms in a category associated to C, the derived category D(C).[12] The objects of the derived category are complexes of objects in C. Specifically, one has

where an object of C is viewed as a complex concentrated in degree zero, and [i] means shifting a complex i steps to the left. From this interpretation, there is a bilinear map, sometimes called the Yoneda product:

which is simply the composition of morphisms in the derived category.

The Yoneda product can also be described in more elementary terms. For i = j = 0, the product is the composition of maps in the category C. In general, the product can be defined by splicing together two Yoneda extensions.

Alternatively, the Yoneda product can be defined in terms of resolutions. (This is close to the definition of the derived category.) For example, let R be a ring, with R-modules A, B, C, and let P, Q, and T be projective resolutions of A, B, C. Then Exti
R
(A,B) can be identified with the group of chain homotopy classes of chain maps PQ[i]. The Yoneda product is given by composing chain maps:

By any of these interpretations, the Yoneda product is associative. As a result, is a graded ring, for any R-module A. For example, this gives the ring structure on group cohomology since this can be viewed as . Also by associativity of the Yoneda product: for any R-modules A and B, is a module over .

Important special cases

  • Group cohomology is defined by , where G is a group, M is a representation of G over the integers, and is the group ring of G.
  • Lie algebra cohomology is defined by , where is a Lie algebra over a commutative ring k, M is a -module, and is the universal enveloping algebra.
  • For a topological space X, sheaf cohomology can be defined as Here Ext is taken in the abelian category of sheaves of abelian groups on X, and is the sheaf of locally constant -valued functions.
  • For a commutative Noetherian local ring R with residue field k, is the universal enveloping algebra of a graded Lie algebra π*(R) over k, known as the homotopy Lie algebra of R. (To be precise, when k has characteristic 2, π*(R) has to be viewed as an "adjusted Lie algebra".[13]) There is a natural homomorphism of graded Lie algebras from the André–Quillen cohomology D*(k/R,k) to π*(R), which is an isomorphism if k has characteristic zero.[14]

See also

Notes

  1. ^ Weibel (1999); Cartan & Eilenberg (1956), section VI.1.
  2. ^ Weibel (1994), sections 2.4 and 2.5 and Theorem 2.7.6.
  3. ^ Weibel (1994), Chapters 2 and 3.
  4. ^ Weibeil (1994), Lemma 3.3.1.
  5. ^ Weibel (1994), section 4.5.
  6. ^ Weibel (1994), Definition 2.1.1.
  7. ^ Weibel (1994), Proposition 3.3.4.
  8. ^ Weibel (1994), Proposition 3.3.10.
  9. ^ Weibel (1994), Theorem 3.4.3.
  10. ^ Weibel (1994), Corollary 3.4.5.
  11. ^ Weibel (1994), Vists 3.4.6. Some minor corrections are in the errata.
  12. ^ Weibel (1994), sections 10.4 and 10.7; Gelfand & Manin (2003), Chapter III.
  13. ^ Sjödin (1980), Notation 14.
  14. ^ Avramov (2010), section 10.2.

References

  • Avramov, Luchezar (2010), "Infinite free resolutions", Six lectures on commutative algebra, Birkhäuser, pp. 1–108, doi:10.1007/978-3-0346-0329-4_1, ISBN 978-3-7643-5951-5, MR 2641236
  • Baer, Reinhold (1934), "Erweiterung von Gruppen und ihren Isomorphismen", Mathematische Zeitschrift, 38 (1): 375–416, doi:10.1007/BF01170643, Zbl 0009.01101
  • Cartan, Henri; Eilenberg, Samuel (1999) [1956], Homological algebra, Princeton: Princeton University Press, ISBN 0-691-04991-2, MR 0077480
  • Eilenberg, Samuel; MacLane, Saunders (1942), "Group extensions and homology", Annals of Mathematics, 43 (4): 757–931, doi:10.2307/1968966, JSTOR 1968966, MR 0007108
  • Gelfand, Sergei I.; Manin, Yuri Ivanovich (2003), Methods of homological algebra, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-12492-5, ISBN 978-3-540-43583-9, MR 1950475
  • Sjödin, Gunnar (1980), "Hopf algebras and derivations", Journal of Algebra, 64: 218–229, doi:10.1016/0021-8693(80)90143-X, MR 0575792
  • Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.
  • Weibel, Charles A. (1999), "History of homological algebra" (PDF), History of topology, Amsterdam: North-Holland, pp. 797–836, ISBN 9780444823755, MR 1721123

Read other articles:

Indiana JonesTokoh Indiana JonesIndiana Jones pada film Raiders of the Lost Ark.PenampilanperdanaRaiders of the Lost ArkPenciptaGeorge LucasPemeranFilm:Harrison Ford (umur 36–58)River Phoenix (umur 13)Serial TV:Corey Carrier (umur 8–10)Sean Patrick Flanery (umur 16–21)George Hall (umur 93)Permainan video:Doug Lee (pengisi suara)David Esch (pengisi suara)InformasiJulukanIndianaIndyJuniorPekerjaanArkeologAssociate deanDosenTentaraMata-mataKeluargaHenry Jones, Sr. (ayah, almarhum)Anna Jone...

 

Башкорт башк. БашкортТип громадська організаціяЗасновано 2014Розпущено 2020Правовий статус неприбуткова організаціяКраїна  РосіяМісце діяльності БашкортостанПопередник Кук буре Башкорт (укр. Башкир) — башкирська національна організація правого політичного ...

 

Братська могила радянських воїнів у селі Вербське Братська могила радянських воїнів у селі Вербське Варварівської сільської ради Юр’ївського району Дніпропетровської області. Зміст 1 Історія 2 Персоналії 3 Додаток 4 Джерела 5 Посилання Історія Братська могила радянськ...

Not to be confused with National Museum of Brazil. You can help expand this article with text translated from the corresponding article in Portuguese. (April 2013) Click [show] for important translation instructions. View a machine-translated version of the Portuguese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply cop...

 

هذه قائمة سفراء وممثلي ومندوبي منظمة التحرير الفلسطينية والسلطة الوطنية الفلسطينية (لاحقًا دولة فلسطين) لدى الدول والمنظمات والهيئات العالمية: السفراء حسب القارة آسيا الدولة المُضيفة الاسم صورة مستوى التمثيل تاريخ الاعتماد الدبلوماسي ملاحظات مراجع  الإمارات العربية ا

 

1988 film directed by Robert–Rajasekar Manasukkul MathappuPosterDirected byRobert–RajasekarScreenplay byRobert–RajasekarBased onThalavattamby PriyadarshanProduced byD. PremakumariB. SaraswathiStarringPrabhuSaranyaLissyCinematographyRobert–RajasekarEdited byR. T. AnnaduraiMusic byS. A. RajkumarProductioncompanyOwnland ArtsDistributed byPerfect ProductionsRelease date 24 June 1988 (1988-06-24) CountryIndiaLanguageTamil Manasukkul Mathappu (transl. Sparklers in the h...

Kekaisaran Qing pada tahun 1820. Dalam kawasan Asia ditunjukkan dalam warna kuning. Dinasti Qing di Asia Bagian Dalam adalah bahasan daerah ekspansi dinasti Qing di Asia Bagian Dalam pada abad ke-17 dan abad ke-18 masehi, termasuk Mongolia agian dalam dan Mongolia bagian Luar, Manchuria, Tibet, Qinghai dan Xinjiang. Perang yang terjadi terutama terhadap dinasti Yuan bagian utara (sebelum 1636) dan Urumqi Khanate (1687-1758). Bahkan sebelum penaklukan Cina yang tepat (lihat penaklukan Ming ole...

 

2018 Indian filmSesh ChithiOriginal PosterDirected byTanmoy RoyProduced bySudhir DuttaStarringSoumitra ChatterjeeLily ChakravartyRitobroto BhattacharyaMoubani SorcarMonica Ganguly - CanadaDulal LahiriDev Ganguly - CanadaBiswajit ChakrobortySudhir Dutta Narugopal MandalCinematographyPartha RakshitEdited byM.SusmitMusic bySudhir DuttaProductioncompanyD. Sudhir ProductionsRelease date 18 May 2018 (2018-05-18) CountryIndiaLanguageBengali Sesh Chithi is a 2018 Bengali drama film dir...

 

Kasihan Hanacaraka: ꦏꦱꦶꦃꦲꦤ꧀Transliterasi: KasihanKapanewonPeta lokasi Kapanewon KasihanNegara IndonesiaProvinsiDaerah Istimewa YogyakartaKabupatenBantulPemerintahan • PanewuSugiyanto, SHPopulasi • Total87,261 jiwaKode Kemendagri34.02.16 Kode BPS3402150 Luas3.437,957 Ha²Desa/kelurahan4Situs webkec-kasihan.bantulkab.go.id Kasihan (Jawa: ꦏꦱꦶꦃꦲꦤ꧀, translit. Kasihan) adalah sebuah kapanewon atau setingkat kecamatan di Kabupaten Ban...

2007 Indian filmNawab NandiniNawab Nandini Movie PosterDirected byHaranath ChakrabortyWritten byAnjan ChoudhuryProduced byJagadish PandeStarringHiranKoel MallickRanjit MallickCinematographyAnjan ChoudhuryMusic byJeet GannguliBabul BoseProductioncompanyEskay MoviesDistributed byEskay MoviesRelease date 23 January 2007 (2007-01-23) Running time120 minutesCountryIndiaLanguageBengali Nawab Nandini (Bengali: নবাব নন্দিনী) is a 2007 Romantic Bengali film directe...

 

1203 Pakin Halte TransjakartaPakinLetakKotaJakarta UtaraDesa/kelurahanPenjaringan, PenjaringanKodepos14440AlamatJalan Gedong PanjangKoordinat6°07′41″S 106°48′17″E / 6.127949°S 106.804727°E / -6.127949; 106.804727Koordinat: 6°07′41″S 106°48′17″E / 6.127949°S 106.804727°E / -6.127949; 106.804727Desain HalteStruktur BRT, median jalan bebas 1 tengah Pintu masukJembatan penyeberangan depan Apartemen Mitra BahariGerbang ta...

 

English line-engraver George Noble (fl. 1795–1806) was an English line-engraver. The son of Edward Noble, author of Elements of Linear Perspective, he was brother to Samuel Noble and William Bonneau Noble.[1] Works Noble made engravings for John Boydell's edition of Shakespeare (1802):[1] Death of Cleopatra by George Noble, after Henry Tresham Borachio, Conrade, and Watchman, after Francis Wheatley, scene from Much Ado about Nothing; Bassanio, Portia, and Attendants, after R...

2019 video game 2019 video gameUnruly HeroesDeveloper(s)Magic Design StudiosPublisher(s)Magic Design StudiosEngineUnityPlatform(s)Nintendo Switch, Microsoft Windows, Xbox One, PlayStation 4, Android, iOSReleaseJanuary 23, 2019[1]Genre(s)PlatformMode(s)Single-player, multiplayer Unruly Heroes is a platform video game developed by French company Magic Design Studios for the Nintendo Switch, Microsoft Windows, Xbox One and PlayStation 4. The mobile version published by Perfect Games Spee...

 

У этого термина существуют и другие значения, см. Ливия (значения). Не следует путать с Ливан. Ливияараб. دَوْلَةُ لِيبْيَا‎ Флаг Эмблема Гимн: «Ливия, Ливия, Ливия» Ливия на карте мира Дата независимости 24 декабря 1951 года (от Великобритании и Франции) Официальный язык...

 

1986 aviation accident LIAT Flight 319A LIAT Series 300 Twin Otter similar to the accident aircraftAccidentDate3 August 1986SummaryCrashed into the sea in poor weatherSiteCaribbean Sea, 13°08′14″N 61°13′08″W / 13.137335°N 61.218879°W / 13.137335; -61.218879AircraftAircraft typede Havilland Canada DHC-6 Series 310 Twin OtterOperatorLIATRegistrationV2-LCJFlight originHewanorra International AirportDestinationE. T. Joshua AirportPassengers11Crew2Fatalitie...

عدلي منصور رئيس المحكمة الدستورية العليا في المنصب30 يونيو 2013 – 30 يونيو 2016 ماهر البحيري عبد الوهاب عبد الرازق.[1] رئيس مؤقت لجمهورية مصر العربية في المنصب3 يوليو 2013 – 3 يونيو 2014 رئيس الوزراء حازم الببلاوي إبراهيم محلب [2][3] محمد مرسي عبد الفتاح السيسي معلومات شخصي...

 

Iranian ethnic group This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2015) (Learn how and when to remove this template message) GilaksTotal population4.6 million (2021)[1]Regions with significant populationsGilan and parts of the provinces of Mazandaran, Qazvin, Tehran and AlborzLanguagesGilaki, PersianReligionIslamRelated ethnic groupsIranian ...

 

Pastoral lease in Western Australia Yeeda Stationclass=notpageimage| Location in Western Australia Fitzroy River and floodplain Yeeda homestead 1893 Yeeda Station is a pastoral lease that operates as a cattle station in the Kimberley region of Western Australia. Description The property is located about 41 kilometres (25 mi) south of Derby and 71 kilometres (44 mi) north west of Looma and 160 km east of Broome. It encompasses much of the northern end of the Fitzroy and Yeeda Ri...

1932 Pre-Code Western film The Rainbow TrailDirected byDavid HowardScreenplay byBarry ConnersPhilip KleinBased onThe Rainbow Trailby Zane GreyProduced byEdmund GraingerStarringGeorge O'BrienCecilia ParkerCinematographyDaniel B. ClarkEdited byAlfred DeGaetanoMusic byR.H. Bassett (uncredited)Peter Brunelli (uncredited)ProductioncompanyFox Film CorporationRelease date January 3, 1932 (1932-01-03) Running time65 minutesCountryUnited StatesLanguageEnglish The Rainbow Trail is a 1932...

 

Pacific archipelagic multi-sport event For the former games between countries of the Pacific Rim, see Pacific Ocean Games. Pacific GamesAbbreviationPAGFirst event1963Occur every4 yearsHeadquartersSuva, FijiPresidentVidhya LakhanWebsiteOfficial website Olympic Games Main topics Bids Boycotts Ceremonies Charter Host cities IFs IOC Medal Medal tables Medalists NOCs Olympism Pierre de Coubertin medal Scandals and controversies Sports Symbols Television Torch relays Venues Women participation Game...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!