Asymptotic giant branch

H–R diagram for globular cluster M5, with known AGB stars marked in blue, flanked by some of the more luminous red-giant branch stars, shown in orange
  Asymptotic giant branch (AGB)
  Upper red-giant branch (RGB)
  End of main sequence, subgiant branch, and lower RGB

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses[citation needed]) late in their lives.

Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars).[1]

Stellar evolution

A sun-like star moves onto the AGB from the Horizontal Branch after core helium exhaustion
A 5 M star moves onto the AGB after a blue loop when helium is exhausted in its core

When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer layers of the star to expand and cool. The star becomes a red giant, following a track towards the upper-right hand corner of the HR diagram.[2] Eventually, once the temperature in the core has reached approximately 3×108 K, helium burning (fusion of helium nuclei) begins. The onset of helium burning in the core halts the star's cooling and increase in luminosity, and the star instead moves down and leftwards in the HR diagram. This is the horizontal branch (for population II stars) or a blue loop for stars more massive than about 2.3 M.[3]

After the completion of helium burning in the core, the star again moves to the right and upwards on the diagram, cooling and expanding as its luminosity increases. Its path is almost aligned with its previous red-giant track, hence the name asymptotic giant branch, although the star will become more luminous on the AGB than it did at the tip of the red-giant branch. Stars at this stage of stellar evolution are known as AGB stars.[3]

AGB stage

The AGB phase is divided into two parts, the early AGB (E-AGB) and the thermally pulsing AGB (TP-AGB). During the E-AGB phase, the main source of energy is helium fusion in a shell around a core consisting mostly of carbon and oxygen. During this phase, the star swells up to giant proportions to become a red giant again. The star's radius may become as large as one astronomical unit (~215 R).[3]

After the helium shell runs out of fuel, the TP-AGB starts. Now the star derives its energy from fusion of hydrogen in a thin shell, which restricts the inner helium shell to a very thin layer and prevents it fusing stably. However, over periods of 10,000 to 100,000 years, helium from the hydrogen shell burning builds up and eventually the helium shell ignites explosively, a process known as a helium shell flash. The power of the shell flash peaks at thousands of times the observed luminosity of the star, but decreases exponentially over just a few years. The shell flash causes the star to expand and cool which shuts off the hydrogen shell burning and causes strong convection in the zone between the two shells.[3] When the helium shell burning nears the base of the hydrogen shell, the increased temperature reignites hydrogen fusion and the cycle begins again. The large but brief increase in luminosity from the helium shell flash produces an increase in the visible brightness of the star of a few tenths of a magnitude for several hundred years. These changes are unrelated to the brightness variations on periods of tens to hundreds of days that are common in this type of star.[4]

Evolution of a 2 M star on the TP-AGB

During the thermal pulses, which last only a few hundred years, material from the core region may be mixed into the outer layers, changing the surface composition, in a process referred to as dredge-up. Because of this dredge-up, AGB stars may show S-process elements in their spectra and strong dredge-ups can lead to the formation of carbon stars. All dredge-ups following thermal pulses are referred to as third dredge-ups, after the first dredge-up, which occurs on the red-giant branch, and the second dredge up, which occurs during the E-AGB. In some cases there may not be a second dredge-up but dredge-ups following thermal pulses will still be called a third dredge-up. Thermal pulses increase rapidly in strength after the first few, so third dredge-ups are generally the deepest and most likely to circulate core material to the surface.[5][6]

AGB stars are typically long-period variables, and suffer mass loss in the form of a stellar wind. For M-type AGB stars, the stellar winds are most efficiently driven by micron-sized grains.[7] Thermal pulses produce periods of even higher mass loss and may result in detached shells of circumstellar material. A star may lose 50 to 70% of its mass during the AGB phase.[8] The mass-loss rates typically range between 10−8 to 10−5 M year−1, and can even reach as high as 10−4 M year−1;[9] while wind velocities are typically between 5 to 30 km/s.[10]

Circumstellar envelopes of AGB stars

Formation of a planetary nebula at the end of the asymptotic giant branch phase

The extensive mass loss of AGB stars means that they are surrounded by an extended circumstellar envelope (CSE). Given a mean AGB lifetime of one Myr and an outer velocity of 10 km/s, its maximum radius can be estimated to be roughly 3×1014 km (30 light years). This is a maximum value since the wind material will start to mix with the interstellar medium at very large radii, and it also assumes that there is no velocity difference between the star and the interstellar gas.

These envelopes have a dynamic and interesting chemistry, much of which is difficult to reproduce in a laboratory environment because of the low densities involved. The nature of the chemical reactions in the envelope changes as the material moves away from the star, expands and cools. Near the star the envelope density is high enough that reactions approach thermodynamic equilibrium. As the material passes beyond about 5×109 km the density falls to the point where kinetics, rather than thermodynamics, becomes the dominant feature. Some energetically favorable reactions can no longer take place in the gas, because the reaction mechanism requires a third body to remove the energy released when a chemical bond is formed. In this region many of the reactions that do take place involve radicals such as OH (in oxygen rich envelopes) or CN (in the envelopes surrounding carbon stars). In the outermost region of the envelope, beyond about 5×1011 km, the density drops to the point where the dust no longer completely shields the envelope from interstellar UV radiation and the gas becomes partially ionized. These ions then participate in reactions with neutral atoms and molecules. Finally as the envelope merges with the interstellar medium, most of the molecules are destroyed by UV radiation.[11][12]

The temperature of the CSE is determined by heating and cooling properties of the gas and dust, but drops with radial distance from the photosphere of the stars which are 2,0003,000 K. Chemical peculiarities of an AGB CSE outwards include:[13]

The dichotomy between oxygen-rich and carbon-rich stars has an initial role in determining whether the first condensates are oxides or carbides, since the least abundant of these two elements will likely remain in the gas phase as COx.

In the dust formation zone, refractory elements and compounds (Fe, Si, MgO, etc.) are removed from the gas phase and end up in dust grains. The newly formed dust will immediately assist in surface catalyzed reactions. The stellar winds from AGB stars are sites of cosmic dust formation, and are believed to be the main production sites of dust in the universe.[14]

The stellar winds of AGB stars (Mira variables and OH/IR stars) are also often the site of maser emission. The molecules that account for this are SiO, H2O, OH, HCN, and SiS.[15][16][17][18][19] SiO, H2O, and OH masers are typically found in oxygen-rich M-type AGB stars such as R Cassiopeiae and U Orionis,[20] while HCN and SiS masers are generally found in carbon stars such as IRC +10216. S-type stars with masers are uncommon.[20]

After these stars have lost nearly all of their envelopes, and only the core regions remain, they evolve further into short-lived protoplanetary nebula. The final fate of the AGB envelopes are represented by planetary nebulae (PNe).[21]

Physical samples

Physical samples, known as presolar grains, of mineral grains from AGB stars are available for laboratory analysis in the form of individual refractory presolar grains. These formed in the circumstellar dust envelopes and were transported to the early Solar System by stellar wind. A majority of presolar silicon carbide grains have their origin in 1–3 Mcarbon stars in the late thermally-pulsing AGB phase of their stellar evolution.[22][23]

Late thermal pulse

As many as a quarter of all post-AGB stars undergo what is dubbed a "born-again" episode. The carbon–oxygen core is now surrounded by helium with an outer shell of hydrogen. If the helium is re-ignited a thermal pulse occurs and the star quickly returns to the AGB, becoming a helium-burning, hydrogen-deficient stellar object.[24] If the star still has a hydrogen-burning shell when this thermal pulse occurs, it is termed a "late thermal pulse". Otherwise it is called a "very late thermal pulse".[25]

The outer atmosphere of the born-again star develops a stellar wind and the star once more follows an evolutionary track across the Hertzsprung–Russell diagram. However, this phase is very brief, lasting only about 200 years before the star again heads toward the white dwarf stage. Observationally, this late thermal pulse phase appears almost identical to a Wolf–Rayet star in the midst of its own planetary nebula.[24]

Stars such as Sakurai's Object and FG Sagittae are being observed as they rapidly evolve through this phase.

Mapping the circumstellar magnetic fields of thermal-pulsating (TP-) AGB stars has recently been reported[26] using the so called Goldreich-Kylafis effect.

Super-AGB stars

Stars close to the upper mass limit to still qualify as AGB stars show some peculiar properties and have been dubbed super-AGB stars. They have masses above 7 M and up to 9 or 10 M (or more[27]). They represent a transition to the more massive supergiant stars that undergo full fusion of elements heavier than helium. During the triple-alpha process, some elements heavier than carbon are also produced: mostly oxygen, but also some magnesium, neon, and even heavier elements. Super-AGB stars develop partially degenerate carbon–oxygen cores that are large enough to ignite carbon in a flash analogous to the earlier helium flash. The second dredge-up is very strong in this mass range and that keeps the core size below the level required for burning of neon as occurs in higher-mass supergiants. The size of the thermal pulses and third dredge-ups are reduced compared to lower-mass stars, while the frequency of the thermal pulses increases dramatically. Some super-AGB stars may explode as an electron capture supernova, but most will end as oxygen–neon white dwarfs.[28] Since these stars are much more common than higher-mass supergiants, they could form a high proportion of observed supernovae. Detecting examples of these supernovae would provide valuable confirmation of models that are highly dependent on assumptions.[citation needed]

See also

References

  1. ^ Lattanzio, J.; Forestini, M. (1999). "Nucleosynthesis in AGB Stars". In Le Bertre, T.; Lebre, A.; Waelkens, C. (eds.). Asymptotic Giant Branch Stars. IAU Symposium 191. p. 31. Bibcode:1999IAUS..191...31L. ISBN 978-1-886733-90-9.
  2. ^ Iben, I. (1967). "Stellar Evolution.VI. Evolution from the Main Sequence to the Red-Giant Branch for Stars of Mass 1 M, 1.25 M, and 1.5  M". The Astrophysical Journal. 147: 624. Bibcode:1967ApJ...147..624I. doi:10.1086/149040.
  3. ^ a b c d Vassiliadis, E.; Wood, P. R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413 (2): 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  4. ^ Marigo, P.; et al. (2008). "Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models". Astronomy and Astrophysics. 482 (3): 883–905. arXiv:0711.4922. Bibcode:2008A&A...482..883M. doi:10.1051/0004-6361:20078467. S2CID 15076538.
  5. ^ Gallino, R.; et al. (1998). "Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and thes-Process". The Astrophysical Journal. 497 (1): 388–403. Bibcode:1998ApJ...497..388G. doi:10.1086/305437.
  6. ^ Mowlavi, N. (1999). "On the third dredge-up phenomenon in asymptotic giant branch stars". Astronomy and Astrophysics. 344: 617. arXiv:astro-ph/9903473. Bibcode:1999A&A...344..617M.
  7. ^ Höfner, S. (2008-11-01). "Winds of M-type AGB stars driven by micron-sized grains". Astronomy & Astrophysics. 491 (2): L1–L4. Bibcode:2008A&A...491L...1H. doi:10.1051/0004-6361:200810641. ISSN 0004-6361.
  8. ^ Wood, P. R.; Olivier, E. A.; Kawaler, S. D. (2004). "Long Secondary Periods in Pulsating Asymptotic Giant Branch Stars: An Investigation of Their Origin". The Astrophysical Journal. 604 (2): 800. Bibcode:2004ApJ...604..800W. doi:10.1086/382123.
  9. ^ Höfner, Susanne; Olofsson, Hans (2018-01-09). "Mass loss of stars on the asymptotic giant branch". The Astronomy and Astrophysics Review. 26 (1): 1. doi:10.1007/s00159-017-0106-5. ISSN 1432-0754.
  10. ^ Höfner, Susanne; Freytag, Bernd (November 2020). "Explaining the winds of AGB stars: Recent progress". Proceedings of the International Astronomical Union. 16 (S366): 165–172. arXiv:2204.09728. doi:10.1017/S1743921322000199. ISSN 1743-9213.
  11. ^ Omont, A. (1984). Mass Loss from Red Giants (Morris & Zuckerman Eds). Springer. p. 269. ISBN 978-94-009-5428-1. Retrieved 21 November 2020.
  12. ^ Habing, H. J. (1996). "Circumstellar envelopes and Asymptotic Giant Branch stars". The Astronomy and Astrophysics Review. 7 (2): 97–207. Bibcode:1996A&ARv...7...97H. doi:10.1007/PL00013287. S2CID 120797516.
  13. ^ Klochkova, V. G. (2014). "Circumstellar envelope manifestations in the optical spectra of evolved stars". Astrophysical Bulletin. 69 (3): 279–295. arXiv:1408.0599. Bibcode:2014AstBu..69..279K. doi:10.1134/S1990341314030031. S2CID 119265398.
  14. ^ Sugerman, Ben E. K.; Ercolano, Barbara; Barlow, M. J.; Tielens, A. G. G. M.; Clayton, Geoffrey C.; Zijlstra, Albert A.; Meixner, Margaret; Speck, Angela; Gledhill, Tim M.; Panagia, Nino; Cohen, Martin; Gordon, Karl D.; Meyer, Martin; Fabbri, Joanna; Bowey, Janet. E.; Welch, Douglas L.; Regan, Michael W.; Kennicutt, Robert C. (2006). "Massive-Star Supernovae as Major Dust Factories". Science. 313 (5784): 196–200. arXiv:astro-ph/0606132. Bibcode:2006Sci...313..196S. doi:10.1126/science.1128131. PMID 16763110. S2CID 41628158.
  15. ^ Deacon, R. M.; Chapman, J. M.; Green, A. J.; Sevenster, M. N. (2007). "H2O Maser Observations of Candidate Post-AGB Stars and Discovery of Three High-Velocity Water Sources". The Astrophysical Journal. 658 (2): 1096. arXiv:astro-ph/0702086. Bibcode:2007ApJ...658.1096D. doi:10.1086/511383. S2CID 7776074.
  16. ^ Humphreys, E. M. L. (2007). "Submillimeter and millimeter masers". Proceedings of the International Astronomical Union. 242 (1): 471–480. arXiv:0705.4456. Bibcode:2007IAUS..242..471H. doi:10.1017/S1743921307013622. S2CID 119600748.
  17. ^ Fonfría Expósito, J. P.; Agúndez, M.; Tercero, B.; Pardo, J. R.; Cernicharo, J. (2006). "High-J v=0 SiS maser emission in IRC+10216: A new case of infrared overlaps". The Astrophysical Journal. 646 (1): L127. arXiv:0710.1836. Bibcode:2006ApJ...646L.127F. doi:10.1086/507104. S2CID 17803905.
  18. ^ Schilke, P.; Mehringer, D. M.; Menten, K. M. (2000). "A submillimeter HCN laser in IRC+10216". The Astrophysical Journal. 528 (1): L37–L40. arXiv:astro-ph/9911377. Bibcode:2000ApJ...528L..37S. doi:10.1086/312416. PMID 10587490. S2CID 17990217.
  19. ^ Schilke, P.; Menten, K. M. (2003). "Detection of a second, strong submillimeter HCN laser line towards carbon stars". The Astrophysical Journal. 583 (1): 446. Bibcode:2003ApJ...583..446S. doi:10.1086/345099. S2CID 122549795.
  20. ^ a b Engels, D. (1979). "Catalogue of late-type stars with OH, H2O or SiO maser emission". Astronomy and Astrophysics Supplement Series. 36: 337. Bibcode:1979A&AS...36..337E.
  21. ^ Werner, K.; Herwig, F. (2006). "The Elemental Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars". Publications of the Astronomical Society of the Pacific. 118 (840): 183–204. arXiv:astro-ph/0512320. Bibcode:2006PASP..118..183W. doi:10.1086/500443. S2CID 119475536.
  22. ^ Zinner, E. (1 January 2014). "1.4 – Presolar Grains". Treatise on Geochemistry (Second Edition): 181–213. doi:10.1016/B978-0-08-095975-7.00101-7. ISBN 978-0-08-098300-4.
  23. ^ Iben, Icko; Renzini, Alvio (September 1983). "Asymptotic Giant Branch Evolution and Beyond". Annual Review of Astronomy and Astrophysics. 21 (1): 271–342. Bibcode:1983ARA&A..21..271I. doi:10.1146/annurev.aa.21.090183.001415.
  24. ^ a b Aerts, C.; Christensen-Dalsgaard, J.; Kurtz, D. W. (2010). Asteroseismology. Springer. pp. 37–38. ISBN 978-1-4020-5178-4.
  25. ^ Duerbeck, H. W. (2002). "The final helium flash object V4334 Sgr (Sakurai's Object) – an overview". In Sterken, C.; Kurtz, D. W. (eds.). Observational aspects of pulsating B and A stars. ASP Conference Series. Vol. 256. San Francisco: Astronomical Society of the Pacific. pp. 237–248. Bibcode:2002ASPC..256..237D. ISBN 1-58381-096-X.
  26. ^ Huang, K.-Y.; Kemball, A. J.; Vlemmings, W. H. T.; Lai, S.-P.; Yang, L.; Agudo, I. (July 2020). "Mapping circumstellar magnetic fields of late-type evolved stars with the Goldreich-Kylafis effect: CARMA observations at $\lambda 1.3$ mm of R Crt and R Leo". The Astrophysical Journal. 899 (2): 152. arXiv:2007.00215. Bibcode:2020ApJ...899..152H. doi:10.3847/1538-4357/aba122. S2CID 220280728.
  27. ^ Siess, L. (2006). "Evolution of massive AGB stars". Astronomy and Astrophysics. 448 (2): 717–729. Bibcode:2006A&A...448..717S. doi:10.1051/0004-6361:20053043.
  28. ^ Eldridge, J. J.; Tout, C. A. (2004). "Exploring the divisions and overlap between AGB and super-AGB stars and supernovae". Memorie della Società Astronomica Italiana. 75: 694. arXiv:astro-ph/0409583. Bibcode:2004MmSAI..75..694E.

Further reading

Read other articles:

Current Permanent Representative of Ukraine to the United Nations You can help expand this article with text translated from the corresponding article in Ukrainian. (March 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the Engl...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2023) إطلاق النار في جاكسونفيل 2023 المعلومات البلد الولايات المتحدة  الموقع جاكسونفيل، فلوريدا  الإحداثيات 30°20′57″N 81°41′46″W / 30.349166666667°N 81.696111111111°W...

 

Sungai Binangat adalah sebuah sungai yang melintasi dan mengalir di wilayah Kota Samarinda, provinsi Kalimantan Timur, Indonesia. Sungai Binangat memiliki panjang 4.800 meter. Sungai ini mengalir di lokasi Lempake. Sungai Binangat adalah anak sungai dari Sungai Mahakam[1][2] Lihat pula Daftar sungai di Indonesia Daftar sungai di Kalimantan Daftar sungai di Kalimantan Timur Daftar sungai di Samarinda Referensi ^ Peta Samarinda.A. Rahman (User:Ezagren). Diakses 05 Desember 2019....

 

Henry Iba AwardAwarded forthe best men's college basketball head coach in NCAA Division I competitionCountryUnited StatesPresented byUnited States Basketball Writers AssociationHistoryFirst award1959Most recentShaka Smart, MarquetteWebsitesportswriters.net The Henry Iba Award was established in 1959 to recognize the best college basketball coach of the year by the United States Basketball Writers Association (USBWA). Five nominees are presented and the individual with the most votes receives ...

 

البروتوكول المتعلق بأوضاع اللاجئين  الأطراف الموقعة فقط على معاهدة عام 1951   الأطراف الموقعة فقط على بروتوكول عام 1967   الأطراف الموقعة على كليهما   دول لم توقعمعلومات عامةالنوع معاهدة متعددة الأطراف التوقيع 31 يناير 1967المكان نيويوركالموقعون 19الأطراف ا�...

 

Diagram ileum dan organ-organ yang berhubungan Usus penyerapan dalam sistem pencernaan. Usus penyerapan (bahasa Inggris: ileum) adalah bagian terakhir dari usus halus. Pada sistem pencernaan manusia, ) ini memiliki panjang sekitar 2–4 m dan terletak setelah duodenum dan jejunum, dan dilanjutkan oleh usus buntu. Ileum memiliki pH antara 7 dan 8 (netral atau sedikit basa) dan berfungsi menyerap vitamin B12 dan garam-garam empedu. Pranala luar (Inggris) Ileal Villi Diarsipkan 2012-02-18 di...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 25 de agosto de 2015. Italo del Valle Alliegro Italo del Valle Alliegro como Ministro de la DefensaInformación personalNacimiento 8 de septiembre de 1939 (84 años)Nacionalidad VenezolanaInformación profesionalOcupación Militar, oficial militar y alto cargo Años activo 1959-1989Rama militar Ejército Nacional de VenezuelaUnidad militar       &#...

 

Form of theatre originating in Italy Italian comedy redirects here. For the film genre, see Commedia all'italiana. A commedia dell'arte street play during the Carnival of Venice Commedia dell'arte Troupe on a Wagon in a Town Square by Jan Miel (1640) Commedia dell'arte (/kɒˈmeɪdiə dɛlˈɑːrteɪ, kə-, -ˈmɛdiə, -ˈɑːrtiː/;[1][2] Italian: [komˈmɛːdja delˈlarte]; lit. 'comedy of the profession')[3] was an early form of professional theatr...

 

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Sabotage Master Joe y O.G. Black album – news · newspapers · books · schol...

 

Vijay PrashadPrashad pada 2010Nama asalবিজয় প্রসাদLahir14 Agustus 1967 (umur 56)Kolkata, Bengal Barat, IndiaKebangsaanIndiaPendidikan The Doon School Almamater Pomona College (BA) Universitas Chicago (PhD) KerabatBrinda Karat (bibi)Situs webthetricontinental.org Vijay Prashad (lahir 14 Agustus 1967) adalah seorang sejarawan, wartawan, komentator dan intelektual Marxis asal India.[1][2] Ia adalah direktur eksekutif Tricontinental: Institute for ...

 

River in Estrie, Quebec (Canada) Drolet RiverDrolet River downstream from the Rang 5 bridge to the east.Native nameRivière Drolet (French)LocationCountryCanadaProvinceQuebecRegionEstrieMRCLe Granit Regional County MunicipalityPhysical characteristicsSourceDrolet Lake • locationLac-Drolet • coordinates45°43′43″N 70°51′31″W / 45.72857°N 70.858699°W / 45.72857; -70.858699 • elevation460 metres (1,510&#...

 

Census-designated place in Hawaii, United States Census-designated place in Hawaii, United StatesIroquois PointCensus-designated placeLocation in Honolulu County and the state of HawaiiCoordinates: 21°19′46″N 157°58′51″W / 21.32944°N 157.98083°W / 21.32944; -157.98083CountryUnited StatesStateHawaiiArea[1] • Total1.15 sq mi (2.96 km2) • Land0.81 sq mi (2.11 km2) • Water0.33 sq...

 

Pour les autres articles nationaux ou selon les autres juridictions, voir Sénat. Pour un article plus général, voir Sénat (France). Cet article est une ébauche concernant l’histoire de France. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Le palais du Luxembourg sous le Second Empire. Le Sénat sous la Deuxième République puis le Second Empire est une assemblée législative instituée par la constitut...

 

Galaxy in the constellation of Bootes NGC 5523SDSS image of NGC 5523Observation data (J2000 epoch)ConstellationBoötesRight ascension14h 14m 52.31s[1]Declination+25° 19′ 3.41″[1]Redshift0.003488[1]Heliocentric radial velocity1044 km/s[1]Galactocentric velocity1093 km/s[2]Distance49 ± 3 Mly(15.0 ± 1.0 Mpc)[2]Apparent magnitude (V)12.75[2]Absolute magnitude (V)-18.1[nb 1]CharacteristicsTypeSA(...

 

Johnny Frisbie interviewed on ThinkTech Hawaii in 2019 Florence Ngatokura Johnny Frisbie QSM (born 19 June 1932), also known as Johnny Frisbie Hebenstreit, is a Cook Islands author. Her autobiographical children's novel, Miss Ulysses of Puka-Puka (1948), was the first published literary work by a Pacific Islander woman author.[1][2] Biography Frisbie was born in Papeete, Tahiti, the second child of American writer Robert Dean Frisbie and Ngatokura ‘A Mata’a. In 1934 the fa...

 

Goblini discographyStudio albums6Live albums3Music videos8Singles2Other appearances10 The discography of Goblini, a Serbian punk rock band from Šabac, consists of four studio albums, three live albums as well as several various artists compilations. The debut album Goblini (The Goblins), released in 1994, was recorded in the lineup Branko Golubović (vocals), Alen Jovanović (guitar), Vlada Kokotović (bass) and Nenad Divnić (drums), released on compact cassette only. During the same year, ...

 

Artikel ini bukan mengenai Gelar kehormatan Jepang. Prefiks o (お) atau go (ご) ditambahkan pada nomina untuk memberikan kesan keindahan. Dalam gambar, tombol pilihan pada mesin dispenser: お湯 (o-yu, air panas) dan お茶 (o-cha, teh) Tuturan honorifik dalam bahasa Jepang (敬語code: ja is deprecated , keigo, bahasa honorifik) adalah ungkapan hormat yang digunakan oleh penutur dan penulis bahasa Jepang berdasarkan status sosial dan tingkat keakraban lawan bicara atau pihak ketiga yang d...

 

The top basketball league in Switzerland Basketball leagueSB LeagueFounded1931; 92 years ago (1931)First season1931–32CountrySwitzerlandConfederationFIBA EuropeNumber of teams9Level on pyramid1Relegation toLNBDomestic cup(s)Swiss Cup SBL CupInternational cup(s)Champions LeagueFIBA Europe CupCurrent championsFribourg Olympic (19th title) (2021–22)Most championshipsFribourg Olympic (19 titles)WebsiteLink 2023–24 Swiss Basketball League The Swiss Basketball League, also k...

 

← 2015 •  • 2023 → Elecciones locales de Medellín de 2019Gobernador de AntioquiaDiputados de la Asamblea Departamental Alcalde de MedellínConcejo de Medellín Ediles de las JAL Fecha 27 de octubre de 2019 Tipo Local Demografía electoral Población 1,662,929 Votantes 833,210 Participación    50.05 %  0.6 % Votos válidos 783,820 Votos en blanco 81,329 Votos nulos 20,410 Resultados Daniel Quintero Calle – G.S.C Inde...

 

Chapter of the New Testament ← chapter 14chapter 16 →Gospel of Matthew 15:15 on a piece of Uncial 0237, from 6th century; containing the variant of parable.CategoryGospelChristian Bible partNew TestamentOrder in the Christian part1 Gospel ofMatthew Chapters Matthew 1 Matthew 2 Matthew 3 Matthew 4 Matthew 5 Matthew 6 Matthew 7 Matthew 8 Matthew 9 Matthew 10 Matthew 11 Matthew 12 Matthew 13 Matthew 14 Matthew 15 Matthew 16 Matthew 17 Matthew 18 Matthew 19 Matthew 20 Matthew 21 Mat...