Vitali set

In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable, found by Giuseppe Vitali in 1905.[1] The Vitali theorem is the existence theorem that there are such sets. Each Vitali set is uncountable, and there are uncountably many Vitali sets. The proof of their existence depends on the axiom of choice.

Measurable sets

Certain sets have a definite 'length' or 'mass'. For instance, the interval [0, 1] is deemed to have length 1; more generally, an interval [a, b], ab, is deemed to have length b − a. If we think of such intervals as metal rods with uniform density, they likewise have well-defined masses. The set [0, 1] ∪ [2, 3] is composed of two intervals of length one, so we take its total length to be 2. In terms of mass, we have two rods of mass 1, so the total mass is 2.

There is a natural question here: if E is an arbitrary subset of the real line, does it have a 'mass' or 'total length'? As an example, we might ask what is the mass of the set of rational numbers between 0 and 1, given that the mass of the interval [0, 1] is 1. The rationals are dense in the reals, so any value between and including 0 and 1 may appear reasonable.

However the closest generalization to mass is sigma additivity, which gives rise to the Lebesgue measure. It assigns a measure of ba to the interval [a, b], but will assign a measure of 0 to the set of rational numbers because it is countable. Any set which has a well-defined Lebesgue measure is said to be "measurable", but the construction of the Lebesgue measure (for instance using Carathéodory's extension theorem) does not make it obvious whether non-measurable sets exist. The answer to that question involves the axiom of choice.

Construction and proof

A Vitali set is a subset of the interval of real numbers such that, for each real number , there is exactly one number such that is a rational number. Vitali sets exist because the rational numbers form a normal subgroup of the real numbers under addition, and this allows the construction of the additive quotient group of these two groups which is the group formed by the cosets of the rational numbers as a subgroup of the real numbers under addition. This group consists of disjoint "shifted copies" of in the sense that each element of this quotient group is a set of the form for some in . The uncountably many elements of partition into disjoint sets, and each element is dense in . Each element of intersects , and the axiom of choice guarantees the existence of a subset of containing exactly one representative out of each element of . A set formed this way is called a Vitali set.

Every Vitali set is uncountable, and is irrational for any .

Non-measurability

A possible enumeration of the positive rational numbers

A Vitali set is non-measurable. To show this, we assume that is measurable and we derive a contradiction. Let be an enumeration of the rational numbers in (recall that the rational numbers are countable). From the construction of , we can show that the translated sets , are pairwise disjoint. (If not, then there exists distinct and such that , a contradiction.)

Next, note that

To see the first inclusion, consider any real number in and let be the representative in for the equivalence class ; then for some rational number in which implies that is in .

Apply the Lebesgue measure to these inclusions using sigma additivity:

Because the Lebesgue measure is translation invariant, and therefore

But this is impossible. Summing infinitely many copies of the constant yields either zero or infinity, according to whether the constant is zero or positive. In neither case is the sum in . So cannot have been measurable after all, i.e., the Lebesgue measure must not define any value for .

Properties

No Vitali set has the property of Baire.[2]

By modifying the above proof, one shows that each Vitali set has Banach measure 0. This does not create any contradictions since Banach measures are not countably additive, but only finitely additive.

Role of the axiom of choice

The construction of Vitali sets given above uses the axiom of choice. The question arises: is the axiom of choice needed to prove the existence of sets that are not Lebesgue measurable? The answer is yes, provided that inaccessible cardinals are consistent with the most common axiomatization of set theory, so-called ZFC.

In 1964, Robert Solovay constructed a model of Zermelo–Fraenkel set theory without the axiom of choice where all sets of real numbers are Lebesgue measurable. This is known as the Solovay model.[3] In his proof, Solovay assumed that the existence of inaccessible cardinals is consistent with the other axioms of Zermelo-Fraenkel set theory, i.e. that it creates no contradictions. This assumption is widely believed to be true by set theorists, but it cannot be proven in ZFC alone.[4]

In 1980, Saharon Shelah proved that it is not possible to establish Solovay's result without his assumption on inaccessible cardinals.[4]

See also

References

  1. ^ Vitali, Giuseppe (1905). "Sul problema della misura dei gruppi di punti di una retta". Bologna, Tip. Gamberini e Parmeggiani.
  2. ^ Oxtoby, John C. (1980), Measure and Category, Graduate Texts in Mathematics, vol. 2 (2nd ed.), Springer-Verlag, ISBN 978-0-387-90508-2. See page 22.
  3. ^ Solovay, Robert M. (1970), "A model of set-theory in which every set of reals is Lebesgue measurable", Annals of Mathematics, Second Series, 92 (1): 1–56, doi:10.2307/1970696, ISSN 0003-486X, JSTOR 1970696, MR 0265151
  4. ^ a b Wagon, Stan; Tomkowicz, Grzegorz (2016). The Banach-Tarski Paradox (2nd ed.). Cambridge University Press. pp. 296–299.

Bibliography

Read other articles:

1957 United States Supreme Court caseBreithaupt v. AbramSupreme Court of the United StatesArgued December 12–13, 1956Decided February 25, 1957Full case namePaul H. Breithaupt, Petitioner v. Morris Abram, WardenCitations352 U.S. 432 (more)77 S. Ct. 408; 1 L. Ed. 2d 448Case historyPriorCertiorari to the Supreme Court of New Mexico, Breithaupt v. Abram, 58 N.M. 385 (1954).HoldingInvoluntary blood samples, taken by a skilled technician to determine intoxication, do not violate substantive due p...

 

此條目主要从虚构世界自身角度描述虚构作品或元素。 (2016年3月27日)请用现实世界视角来改写本条目,使之更为清晰。 此條目需要补充更多来源。 (2010年5月5日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:潛龍諜影系列用語列表 — 网页、新闻、书籍、学术、图像),以检查网...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merge...

Ibis sendok berparuh kuning Platalea flavipes Rekaman Status konservasiRisiko rendahIUCN22697571 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPelecaniformesFamiliThreskiornithidaeGenusPlataleaSpesiesPlatalea flavipes Gould, 1838 Tata namaSinonim taksonPlatibis flavipesDistribusiEndemikAustralia lbs Ibis sendok berparuh kuning (Platalea flavipes) adalah spesies unggas asal tenggara Australia. Spesies tersebut bukanlah spesies tak lazim di belahan lain dari benua tersebut, dan menyebar sa...

 

Angelika Graf auf dem Deutschen Seniorentag (2009) in Leipzig. Angelika Graf, geb. Bachmann, (* 10. Mai 1947 in München) ist eine deutsche Politikerin (SPD). Inhaltsverzeichnis 1 Leben und Beruf 2 Partei 3 Abgeordnete 4 Bürgerschaftliches Engagement 5 Auszeichnungen 6 Literatur 7 Weblinks 8 Einzelnachweise Leben und Beruf Nach dem Abitur 1966 am Städtischen Luisengymnasium in München studierte Graf Mathematik und Physik an der Technischen Universität München. Von 1971 bis 1976 arbeitete...

 

Johanna SpyriJohanna Spyri, 1879LahirJohanna Louise Heusser(1827-06-12)12 Juni 1827Hirzel, SwissMeninggal7 Juli 1901(1901-07-07) (umur 74)Zürich, SwissPekerjaanPenulis cerita pendek, novelisGenreChildren's literature, sastra dewasaKarya terkenalHeidi Johanna Louise Spyri (née Heusser; bahasa Jerman: [joˈhana ˈʃpiːri]; 12 Juni 1827 – 7 Juli 1901) adalah seorang penulis novel Swiss, terutama cerita anak-anak, dan terkenal karena bukunya Heidi. Lahir di Hirze...

العلاقات الباربادوسية الباهاماسية باربادوس باهاماس   باربادوس   باهاماس تعديل مصدري - تعديل   العلاقات الباربادوسية الباهاماسية هي العلاقات الثنائية التي تجمع بين باربادوس وباهاماس.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للد

 

Hungarian-born actress (born 1944) Catherine SchellCatherine Schell in 1967BornKatherina Freiin Schell von Bauschlott (1944-07-17) 17 July 1944 (age 79)Budapest, Kingdom of HungaryNationalityBritishOther namesCatherine von SchellKatherina von SchellKatherine von SchellCitizenshipBritishAlma materOtto Falckenberg School of the Performing ArtsOccupation(s)Television and film actressYears active1964–2004; 2020-PresentKnown forOn Her Majesty's Secret ServiceThe Return o...

 

Bus rel Lembah AnaiLInformasi umumJenis layananBus rel jarak dekatStatusBeroperasiDaerah operasiDivisi Regional II PadangMulai beroperasi1 November 2016Operator saat iniPT Kereta Api IndonesiaJumlah penumpang harian160 penumpang per hari (rata-rata)[butuh rujukan]Lintas pelayananStasiun awalKayu TanamJumlah pemberhentianLihatlah di bawah.Stasiun akhirBandara Internasional MinangkabauJarak tempuh38 kmWaktu tempuh rerata1 jam 10 menit (rata-rata)Frekuensi perjalanan3 kali pergi pulang s...

2022 Indian song Arabic KuthuArabic Kuthu song cover featuring actors Vijay and Pooja HegdeSingle by Anirudh and Jonita Gandhifrom the album Beast LanguageTamilReleased14 February 2022Recorded2022StudioAlbuquerque Records, ChennaiPanchathan Record Inn and AM Studios, ChennaiStrings 7 Studio, ChennaiMy Studio, KochiYRF Studios, MumbaiGenreEDM, kuthu, Arabic music, dance, popLength4:40LabelSun Pictures, Sun TV (publisher)Composer(s)AnirudhLyricist(s)SivakarthikeyanProducer(s)AnirudhBeast track ...

 

Main article: Hermann Graf Hermann Graf Hermann Graf (24 October 1912 – 4 November 1988) was a German Luftwaffe World War II fighter ace.[Note 1] He served on both the Eastern and Western Fronts. He became the first pilot in aviation history to claim 200 aerial victories—that is, 200 aerial combat encounters resulting in the destruction of the enemy aircraft.[2] In about 830 combat missions, he claimed a total of 212 aerial victories, almost all of which were achieved on t...

 

Species of Old World monkey Tana River red colobus[1] P. rufomitratus in Tana River County, Kenya Conservation status Critically Endangered (IUCN 3.1)[2] CITES Appendix I (CITES)[3] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Family: Cercopithecidae Genus: Piliocolobus Species: P. rufomitratus Binomial name Piliocolobus rufomitratus(Peters, 187...

Prof. Dr. H.Mohammad RasjidiMenteri Agama Indonesia Ke-1Masa jabatan14 November 1945 – 2 Oktober 1946PresidenSoekarnoPerdana MenteriSoetan SjahrirPendahuluJabatan BaruPenggantiFathurrahman Kafrawi Informasi pribadiLahir(1915-05-20)20 Mei 1915 Kotagede, Yogyakarta, IndonesiaMeninggal30 Januari 2001(2001-01-30) (umur 85)KebangsaanIndonesiaAlma materMadrasah Muallimin Muhammadiyah YogyakartaGāmaʿat al-Qāhirah (Cairo University)Sorbonne UniversitySunting kotak info •...

 

2010 film by Irfan Kamal Thanks MaaFilm posterDirected byIrfan KamalWritten byIrfan KamalVishal Vijay KumarProduced byQuantum FilmsStarringMaster Shams PatelMaster SalmanMaster FayaazBaby AlmasRavi MahashabdeMaster JafferBaby SakshiBarry JohnCinematographyAjayan VincentEdited byAmit SaxenaMusic byRanjit BarotDistributed bySPE Films IndiaRelease date 5 March 2010 (2010-03-05) CountryIndiaLanguageHindi Thanks Maa (transl. Thanks mother) is an India Hindi language drama film...

 

1962 studio album by Jan HowardSweet and SentimentalStudio album by Jan HowardReleasedAugust 1962RecordedFebruary – May 1962StudioColumbia StudioGenreCountry[1]Nashville Sound[1]LabelCapitolProducerKen NelsonJan Howard chronology Sweethearts of Country Music(1960) Sweet and Sentimental(1962) Jan Howard Sings Evil on Your Mind(1966) Singles from Sweet and Sentimental Looking BackReleased: November 1962 Sweet and Sentimental is a studio album by American country artist...

Croatian born rabbi (born 1965) Rabbi Sacha PecaricPecaric in 1999BornMay 5, 1965 (1965-05-05) (age 58)Rijeka, SFR Yugoslavia (now Croatia)NationalityItalian Naturalized USOccupationRabbi Sacha Pecaric (born 1965 in Rijeka) is a Croatian-born rabbi. Education and scholarship After studies in Prague, Pecaric continued to study at the rabbinic department of the Yeshiva University in New York City, where he obtained rabbinical ordination, and the Department of Philosophy of Columbia Un...

 

Пангея335—175 млн лет назад Пангея, середина позднего триаса (220 миллионов лет назад) Этимология Значение названия Вся Земля Иные названия Урконтинент (1915)[1] «Открытие» Дата 1912 год Первооткрыватель Альфред Вегенер Основные данные Формирование Каменноугольный период Р...

 

2011 single by The Joy FormidableA Heavy AbacusSingle by The Joy Formidablefrom the album The Big Roar Released8 July 2011Recorded2009 (2009)GenreAlternative rock, shoegazingLength3:40LabelAtlantic RecordsSongwriter(s)The Joy FormidableProducer(s)The Joy FormidableThe Joy Formidable singles chronology I Don't Want to See You Like This (2010) A Heavy Abacus (2011) This Ladder Is Ours (2012) A Heavy Abacus is the third and final single from Welsh alternative rock band The Joy Formidable's ...

Obsolete XML-based vector graphics format VML redirects here. For the muscle, see vastus medialis longus. Not to be confused with VRML. Vector Markup LanguageFilename extension.htm or .htmlInternet media type application/vnd.openxmlformats-officedocument.vmlDrawingDeveloped byMicrosoftType of formatVector image formatExtended fromXMLStandardPart of ECMA-376 and ISO/IEC 29500:2008WebsiteECMA-376, ISO/IEC 29500-4:2012 Vector Markup Language (VML) is an obsolete XML-based file for...

 

Menakinonien (MKn) rakenne. n on isopreenien lukumäärä. Menakinonit eli K2-vitamiinit ja niiden esiasteet ovat ryhmä luonnossa olevia 2-metyyli-1,4-naftokinonijohdannaisia, joiden hiilessä 3 on vaihtelevan pituinen isopreeniketju. Kunkin isopreenin rungossa metyylin kohdalla on kaksoissidos, jotka ovat usein E-muotoa. Menakinonien lyhenne on MK-n tai MKn. n on ketjun isopreenien määrä. Esimerkiksi menatetrenonissa eli MK4:ssä isopreenejä on 4.[1] Menakinoneja pystyvät tuott...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!