Convex analysis

A 3-dimensional convex polytope. Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces.

Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.

Convex sets

A subset of some vector space is convex if it satisfies any of the following equivalent conditions:

  1. If is real and then [1]
  2. If is real and with then
Convex function on an interval.

Throughout, will be a map valued in the extended real numbers with a domain that is a convex subset of some vector space. The map is a convex function if

(Convexity ≤)

holds for any real and any with If this remains true of when the defining inequality (Convexity ≤) is replaced by the strict inequality

(Convexity <)

then is called strictly convex.[1]

Convex functions are related to convex sets. Specifically, the function is convex if and only if its epigraph

A function (in black) is convex if and only if its epigraph, which is the region above its graph (in green), is a convex set.
A graph of the bivariate convex function
(Epigraph def.)

is a convex set.[2] The epigraphs of extended real-valued functions play a role in convex analysis that is analogous to the role played by graphs of real-valued function in real analysis. Specifically, the epigraph of an extended real-valued function provides geometric intuition that can be used to help formula or prove conjectures.

The domain of a function is denoted by while its effective domain is the set[2]

(dom f def.)

The function is called proper if and for all [2] Alternatively, this means that there exists some in the domain of at which and is also never equal to In words, a function is proper if its domain is not empty, it never takes on the value and it also is not identically equal to If is a proper convex function then there exist some vector and some such that

    for every

where denotes the dot product of these vectors.

Convex conjugate

The convex conjugate of an extended real-valued function (not necessarily convex) is the function from the (continuous) dual space of and[3]

where the brackets denote the canonical duality The biconjugate of is the map defined by for every If denotes the set of -valued functions on then the map defined by is called the Legendre-Fenchel transform.

Subdifferential set and the Fenchel-Young inequality

If and then the subdifferential set is

For example, in the important special case where is a norm on , it can be shown[proof 1] that if then this definition reduces down to:

    and    

For any and which is called the Fenchel-Young inequality. This inequality is an equality (i.e. ) if and only if It is in this way that the subdifferential set is directly related to the convex conjugate

Biconjugate

The biconjugate of a function is the conjugate of the conjugate, typically written as The biconjugate is useful for showing when strong or weak duality hold (via the perturbation function).

For any the inequality follows from the Fenchel–Young inequality. For proper functions, if and only if is convex and lower semi-continuous by Fenchel–Moreau theorem.[3][4]

Convex minimization

A convex minimization (primal) problem is one of the form

find when given a convex function and a convex subset

Dual problem

In optimization theory, the duality principle states that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem.

In general given two dual pairs separated locally convex spaces and Then given the function we can define the primal problem as finding such that

If there are constraint conditions, these can be built into the function by letting where is the indicator function. Then let be a perturbation function such that [5]

The dual problem with respect to the chosen perturbation function is given by

where is the convex conjugate in both variables of

The duality gap is the difference of the right and left hand sides of the inequality[6][5][7]

This principle is the same as weak duality. If the two sides are equal to each other, then the problem is said to satisfy strong duality.

There are many conditions for strong duality to hold such as:

Lagrange duality

For a convex minimization problem with inequality constraints,

subject to for

the Lagrangian dual problem is

subject to for

where the objective function is the Lagrange dual function defined as follows:

See also

Notes

  1. ^ a b Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. ISBN 978-0-691-01586-6.
  2. ^ a b c Rockafellar & Wets 2009, pp. 1–28.
  3. ^ a b Zălinescu 2002, pp. 75–79.
  4. ^ Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. pp. 76–77. ISBN 978-0-387-29570-1.
  5. ^ a b Boţ, Radu Ioan; Wanka, Gert; Grad, Sorin-Mihai (2009). Duality in Vector Optimization. Springer. ISBN 978-3-642-02885-4.
  6. ^ Zălinescu 2002, pp. 106–113.
  7. ^ Csetnek, Ernö Robert (2010). Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Logos Verlag Berlin GmbH. ISBN 978-3-8325-2503-3.
  8. ^ Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 978-0-387-29570-1.
  9. ^ Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization (PDF). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 3, 2011.
  1. ^ The conclusion is immediate if so assume otherwise. Fix Replacing with the norm gives If and is real then using gives where in particular, taking gives while taking gives and thus ; moreover, if in addition then because it follows from the definition of the dual norm that Because which is equivalent to it follows that which implies for all From these facts, the conclusion can now be reached. ∎

References

Read other articles:

Voce principale: Giochi olimpici invernali. I Giochi olimpici invernaliCittà ospitanteChamonix-Mont-Blanc, Francia Paesi partecipanti16 (vedi sotto) Atleti partecipanti258 (247 - 11 ) Competizioni16 in 9 sport Cerimonia apertura25 gennaio 1924 Cerimonia chiusura5 febbraio 1924 Aperti daGaston Vidal Giuramento atletiCamille Mandrillon StadioStadio olimpico di Chamonix Medagliere Nazione  Norvegia47617  Finlandia44311  Austria210 3 Cronologia dei Giochi olimpici Giochi precedent...

 

I Heart YouAlbum studio karya Daniel PadillaDirilis14 April 2014DirekamOKtober 2013 – MarET 2014GenrePop, pop rock, OPMDurasi41:10BahasaTagalog, InggrisLabelStar RecordsProduserRoque Rox B. SantosKronologi Daniel Padilla DJP(2013)DJP2013 I Heart You(2014) I Feel Good(2015)I Feel Good2015 Sampul alternatifSingel dalam album I Heart You I Heart YouDirilis: 1 April 2014 Video musikI Heart You Lyric Video di YouTube I Heart You (bloopers) di YouTube I Heart You adalah album studio ketiga da...

 

جامعة لينيرس   معلومات التأسيس 2010 النوع عامة الموقع الجغرافي إحداثيات 56°51′15″N 14°49′51″E / 56.85416667°N 14.83083333°E / 56.85416667; 14.83083333  المدينة فاكسيو[1]،  وكالمار  الرمز البريدي 35195[1]،  و352 52[1]  البلد سويد سميت باسم كارولوس لينيوس  إحصاءات الأس

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. The Evolution of Our Love adalah sebuah seri drama romansa Tiongkok tahun 2018 garapan Andrew Chien. Seri tersebut menampilkan Zhang Ruo Yun, Zhang Tian Ai, Timmy Xu, He Hong Shan, Zhao Dong Ze, dan Liang Bao Ling.[1] Sinopsis Ai Ruo Man adala...

 

Stasiun Kawagishi川岸駅Stasiun Kawagishi, Agustus 2007Lokasi3-15-25 Kawagishi, Okaya-shi, Nagano-ken 394-0045JepangKoordinat36°1′58.7″N 138°1′19.1″E / 36.032972°N 138.021972°E / 36.032972; 138.021972Koordinat: 36°1′58.7″N 138°1′19.1″E / 36.032972°N 138.021972°E / 36.032972; 138.021972Ketinggian757.4 meter[1]Pengelola East Japan Railway Company Central Japan Railway Company Jalur ■Jalur Utama Chūō ■ Jalur ...

 

حصار القواعد البريطانية والدنماركيه في البصرة جزء من حرب العراق خريطة للقواعد البريطانية في البصرة (المطار إلى اليسار قصر البصرة إلى اليمين) معلومات عامة التاريخ 27 فبراير 2007 - 3 سبتمبر 2007 البلد العراق الموقع البصرة , العراق30°29′20″N 47°48′36″E / 30.488888888°N 47.81°E / 30.48888...

العلاقات البلجيكية القطرية بلجيكا قطر   بلجيكا   قطر تعديل مصدري - تعديل   العلاقات البلجيكية القطرية هي العلاقات الثنائية التي تجمع بين بلجيكا وقطر.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بلجيكا قطر المس

 

American government agency NTIA redirects here. For the island off Crete, see Dia (island). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: National Telecommunications and Information Administration – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this template mess...

 

Voce principale: Marvel Cinematic Universe. Le serie televisive del Marvel Cinematic Universe (MCU) sono delle serie televisive statunitensi basate sui personaggi apparsi nei fumetti Marvel Comics. Le serie condividono l'ambientazione e alcuni personaggi, nonché alcuni elementi della trama che fanno da filo conduttore tra di esse. L'MCU ha iniziato a espandersi in televisione nel 2010 con la creazione di Marvel Television, che ha prodotto 13 serie televisive insieme con ABC Studios e la sua ...

French painter Sappho, by Charles Mengin (1877) Manchester Art Gallery, England Charles Auguste Mengin (5 July 1853 – 3 April 1933), was a French academic painter and sculptor. He is known for his painting of the Greek poet Sappho, made in 1877, now in the collection of the Manchester Art Gallery, in England. Early life and education Mengin was born on 5 July 1853 in Paris to Auguste Charles Victor Mengin, a sculptor who died in 1894 in the 14th arrondissement of Paris.[1] He was ed...

 

Light cruiser of the German Imperial Navy Pre-war illustration of Berlin History German Empire NameBerlin Laid down1902 Launched22 September 1903 Commissioned4 April 1905 Decommissioned29 October 1912 Recommissioned1 August 1914 Decommissioned11 February 1917 Recommissioned2 July 1922 Decommissioned27 March 1929 Stricken1 October 1935 FateScuttled, 1947 General characteristics Class and typeBremen-class light cruiser Displacement Normal: 3,278 t (3,226 long tons) Full load: 3,792 t ...

 

2009 single by Akon BeautifulSingle by Akon featuring Colby O'Donis and Kardinal Offishallfrom the album Freedom ReleasedJanuary 6, 2009 (2009-01-06)Recorded2008GenreDance-popLength5:12 (album version)3:51 (radio edit)3:19 (UK radio edit)Label Konvict Muzik Universal Motown Songwriter(s) Colby Colón Jason Harrow Aliaune Thiam Jaylien Wesley Giorgio Tuinfort Producer(s) Akon Jaylien Akon singles chronology What's Love (2008) Beautiful (2009) Day Dreaming (2009) Colby O'Doni...

23-й чемпионат мира Формулы-1 ◄ 1971   Сезон 1972   1973 ►   Чемпион мира Эмерсон Фиттипальди (Lotus) Кубок конструкторов Lotus-Ford Портал:Формула-1 Сезон Формулы-1 1972 года — 23-й чемпионат мира по автогонкам в классе Формула-1, проводившийся FIA. Чемпионат прошёл с 23 я...

 

American baseball player (1897-1938) Baseball player Bob FothergillFothergill with the Detroit TigersOutfielderBorn: (1897-08-16)August 16, 1897Massillon, Ohio, U.S.Died: March 20, 1938(1938-03-20) (aged 40)Detroit, Michigan, U.S.Batted: RightThrew: RightMLB debutAugust 18, 1922, for the Detroit TigersLast MLB appearanceJuly 5, 1933, for the Boston Red SoxMLB statisticsBatting average.325Home runs36Runs batted in582 Teams Detroit Tigers (1922–1930) Chicago...

 

Canadian parliament, 1926–1930 16th Parliament of CanadaMinority parliament9 December 1926 – 30 May 1930Parliament leadersPrimeMinisterWilliam Lyon Mackenzie King25 September 1926 – 7 August 1930Cabinet14th Canadian MinistryLeader of theOppositionHugh Guthrie11 October 1926 – 11 October 1927Richard Bedford Bennett12 October 1927 – 6 August 1930Party caucusesGovernmentLiberal PartyOppositionConservative PartyCrossbenchProgressive PartyUnited Farmers of AlbertaLab...

Naval gun 12-pounder long gun Reproduction of a 12-pounder long gun aboard Hermione (only partially rigged).Typenaval gunService historyUsed byFrance, Spain, Great Britain, Holland, Sweden, United StatesSpecificationsMass1,470 kg 275 kg (mount)Barrel length2.430 metresShell weight5.8 kgCalibre120.7 mm[1] The 12-pounder long gun was an intermediary calibre piece of artillery mounted on warships of the Age of sail. They were used as main guns on the most typical frigates of th...

 

Entryway area in Japanese buildings Genkan of a residence in Japan, viewed from outside looking in. The same genkan, viewed from inside looking out. The doors on the left wall are getabako. Genkan (玄関) are traditional Japanese entryway areas for a house, apartment, or building, a combination of a porch and a doormat.[1] It is usually located inside the building directly in front of the door. The primary function of genkan is for the removal of shoes before entering the main part o...

 

Building in Edinburgh, ScotlandPrestonfield HouseGeneral informationLocationPriestfield Road, Edinburgh,  ScotlandCoordinates55°56′11″N 3°09′27″W / 55.936426°N 3.157475°W / 55.936426; -3.157475Opening1960sOther informationNumber of suites23Number of restaurants1Websitewww.prestonfield.com Prestonfield House is a boutique hotel in Prestonfield, Edinburgh, Scotland. Originally built in 1687 by architect Sir William Bruce,[1] it was once considere...

UK Parliament constituency since 1997 Croydon NorthBorough constituencyfor the House of CommonsBoundary of Croydon North in Greater LondonCountyGreater LondonElectorate85,107 (December 2010)[1]Major settlementsThornton Heath, Norbury, Selhurst, South Norwood, Upper NorwoodCurrent constituencyCreated1997Member of ParliamentSteve Reed (Labour Co-op)SeatsOneCreated fromCroydon North East and Croydon North West1918–1955SeatsOneCreated fromCroydonReplaced byCroydon North East and Croydon...

 

Chinese football club The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Ganzhou Ruishi F.C. – news · newspapers · books · scholar&#...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!