Non-measurable set

In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenkel set theory, the axiom of choice entails that non-measurable subsets of exist.

The notion of a non-measurable set has been a source of great controversy since its introduction. Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable. The measurable sets on the line are iterated countable unions and intersections of intervals (called Borel sets) plus-minus null sets. These sets are rich enough to include every conceivable definition of a set that arises in standard mathematics, but they require a lot of formalism to prove that sets are measurable.

In 1970, Robert M. Solovay constructed the Solovay model, which shows that it is consistent with standard set theory without uncountable choice, that all subsets of the reals are measurable. However, Solovay's result depends on the existence of an inaccessible cardinal, whose existence and consistency cannot be proved within standard set theory.

Historical constructions

The first indication that there might be a problem in defining length for an arbitrary set came from Vitali's theorem.[1] A more recent combinatorial construction which is similar to the construction by Robin Thomas of a non-Lebesgue measurable set with some additional properties appeared in American Mathematical Monthly.[2]

One would expect the measure of the union of two disjoint sets to be the sum of the measure of the two sets. A measure with this natural property is called finitely additive. While a finitely additive measure is sufficient for most intuition of area, and is analogous to Riemann integration, it is considered insufficient for probability, because conventional modern treatments of sequences of events or random variables demand countable additivity.

In this respect, the plane is similar to the line; there is a finitely additive measure, extending Lebesgue measure, which is invariant under all isometries. For higher dimensions the picture gets worse. The Hausdorff paradox and Banach–Tarski paradox show that a three-dimensional ball of radius 1 can be dissected into 5 parts which can be reassembled to form two balls of radius 1.

Example

Consider the set of all points in the unit circle, and the action on by a group consisting of all rational rotations (rotations by angles which are rational multiples of ). Here is countable (more specifically, is isomorphic to ) while is uncountable. Hence breaks up into uncountably many orbits under (the orbit of is the countable set ). Using the axiom of choice, we could pick a single point from each orbit, obtaining an uncountable subset with the property that all of the rational translates (translated copies of the form for some rational )[3] of by are pairwise disjoint (meaning, disjoint from and from each other). The set of those translates partitions the circle into a countable collection of disjoint sets, which are all pairwise congruent (by rational rotations). The set will be non-measurable for any rotation-invariant countably additive probability measure on : if has zero measure, countable additivity would imply that the whole circle has zero measure. If has positive measure, countable additivity would show that the circle has infinite measure.

Consistent definitions of measure and probability

The Banach–Tarski paradox shows that there is no way to define volume in three dimensions unless one of the following five concessions is made:[citation needed]

  1. The volume of a set might change when it is rotated.
  2. The volume of the union of two disjoint sets might be different from the sum of their volumes.
  3. Some sets might be tagged "non-measurable", and one would need to check whether a set is "measurable" before talking about its volume.
  4. The axioms of ZFC (Zermelo–Fraenkel set theory with the axiom of choice) might have to be altered.
  5. The volume of is or .

Standard measure theory takes the third option. One defines a family of measurable sets, which is very rich, and almost any set explicitly defined in most branches of mathematics will be among this family.[citation needed] It is usually very easy to prove that a given specific subset of the geometric plane is measurable.[citation needed] The fundamental assumption is that a countably infinite sequence of disjoint sets satisfies the sum formula, a property called σ-additivity.

In 1970, Solovay demonstrated that the existence of a non-measurable set for the Lebesgue measure is not provable within the framework of Zermelo–Fraenkel set theory in the absence of an additional axiom (such as the axiom of choice), by showing that (assuming the consistency of an inaccessible cardinal) there is a model of ZF, called Solovay's model, in which countable choice holds, every set is Lebesgue measurable and in which the full axiom of choice fails.[citation needed]

The axiom of choice is equivalent to a fundamental result of point-set topology, Tychonoff's theorem, and also to the conjunction of two fundamental results of functional analysis, the Banach–Alaoglu theorem and the Krein–Milman theorem.[citation needed] It also affects the study of infinite groups to a large extent, as well as ring and order theory (see Boolean prime ideal theorem).[citation needed] However, the axioms of determinacy and dependent choice together are sufficient for most geometric measure theory, potential theory, Fourier series and Fourier transforms, while making all subsets of the real line Lebesgue-measurable.[citation needed]

See also

References

Notes

  1. ^ Moore, Gregory H., Zermelo's Axiom of Choice, Springer-Verlag, 1982, pp. 100–101
  2. ^ Sadhukhan, A. (December 2022). "A Combinatorial Proof of the Existence of Dense Subsets in without the "Steinhaus" like Property". Am. Math. Mon. 130 (2): 175. arXiv:2201.03735. doi:10.1080/00029890.2022.2144665.
  3. ^ Ábrego, Bernardo M.; Fernández-Merchant, Silvia; Llano, Bernardo (January 2010). "On the Maximum Number of Translates in a Point Set". Discrete & Computational Geometry. 43 (1): 1–20. doi:10.1007/s00454-008-9111-9. ISSN 0179-5376.

Bibliography

Read other articles:

エヌ・ティ・ティ・データ・カスタマサービス株式会社NTTDATA CUSTOMER SERVICE CORPORATION 本社が入居する豊洲センタービルアネックス種類 株式会社市場情報 未上場略称 NTTD-CS本社所在地 日本〒135-8178東京都江東区豊洲三丁目3番9号豊洲センタービルアネックス32階設立 1998年3月2日業種 情報・通信業法人番号 1010601041837事業内容 ソフトウェア設計、開発、構築、運用保守代

 

Герб Корона Корона - шляхетський герб часів Речі Посполитої, яким користувались шляхетські роди Польщі, України та Білорусі. Вважається, що походить з Кашубщини. Також має назви Чешевський або Цесевський. Зміст 1 Опис герба 2 Історія 3 Роди 4 Джерела Опис герба Герб відомий щ

 

2023 Indian film Purusha PrethamPosterDirected byKrishandWritten byAjith HaridasManu ThodupuzhaProduced byDijo AugustineJomon JacobEinstin Zac PaulVishnu RajanSajin RajPrasanth AlexanderStarringDarshana RajendranAlexander PrasanthJagadishCinematographyKrishandDistributed bySonyLIVRelease date 24 March 2023 (2023-03-24) CountryIndiaLanguageMalayalam Purusha Pretham (transl. Male Ghost) is a 2023 Indian Malayalam-language police procedural film directed by Krishand and prod...

Union Station/South 19th Street Vista de la estaciónUbicaciónCoordenadas 47°14′41″N 122°26′12″O / 47.24485, -122.43663Dirección South 19th Street y Pacific AvenueTacoma, WashingtonDatos de la estaciónInauguración 18 de agosto de 2003Servicios N.º de andenes 1 plataforma centralN.º de vías 2Propietario Sound TransitAdministración Sound TransitLíneasLínea(s) Tacoma Link Centro de Convenciones/South 15th St. ← Tacoma Link → South 25th St. Mapa Union Stati...

 

Wappen Deutschlandkarte 50.1522222222226.6908333333333550Koordinaten: 50° 9′ N, 6° 41′ O Basisdaten Bundesland: Rheinland-Pfalz Landkreis: Vulkaneifel Verbandsgemeinde: Gerolstein Höhe: 550 m ü. NHN Fläche: 9,07 km2 Einwohner: 317 (31. Dez. 2022)[1] Bevölkerungsdichte: 35 Einwohner je km2 Postleitzahl: 54570 Vorwahl: 06599 Kfz-Kennzeichen: DAU Gemeindeschlüssel: 07 2 33 060 Adresse der Verbandsverwaltung: ...

 

Catatan: Dalam sumber-sumber sebelum tahun 1960an, Paus ini kadang-kadang disebut Stefanus VII dan Paus Stefanus V disebut Stefanus VI. Lihat artikel Paus Stefanus untuk keterangan lebih lanjut. PausStefanus VIAwal masa kepausanMei 896Akhir masa kepausanJuli/Agustus 897PendahuluBonifasius VIPenerusRomanusInformasi pribadiNama lahirtidak diketahuiLahirtidak diketahuiMeninggalJuli/Agustus(?) 897tempat tidak diketahuiPaus lainnya yang bernama Stefanus Paus Stefanus VI (tanggal lahirrny...

Sonny with a ChanceMusim 2Poster promosi Sonny with a Chance musim 2Negara asalAmerika SerikatJumlah episode26RilisSaluran asliDisney ChannelTanggal tayang14 Maret 2010 (2010-03-14) –2 Januari 2011 (2011-1-2)Kronologi Musim← SebelumnyaMusim 1Selanjutnya →So Random! Daftar episode Sonny with a Chance Musim kedua dan terakhir serial televisi Sonny with a Chance ditayangkan di Disney Channel mulai 14 Maret 2010 hingga 2 Januari 2011. Enam karakter utama adalah Sonn...

 

Japanese video game developer CelliusNative name株式会社セリウスTypeKabushiki gaishaJoint ventureIndustryVideo gamesFoundedJune 3, 2007; 16 years ago (2007-06-03)DefunctFebruary 29, 2012[1]HeadquartersShibuya, Tokyo, JapanKey peopleKen Kutaragi(CEO)ProductsSoftwareOwnerNamco Bandai Games(51%)Sony Computer Entertainment(49%)Websitehttp://www.cellius.jp/ Cellius Inc.[a] was a Japanese video game developer and publisher headquartered in Shibuya, Tokyo, f...

 

British children's comic strip Rupert BearLogo for Rupert BearPublication informationPublisherDaily ExpressFormatText comics, later balloon comics too.GenreAdventure comics, Fantasy comicsPublication date1920; 103 years ago (1920)–presentMain character(s)RupertCreative teamWritten byMary Tourtel (1920–1935)Alfred Bestall (1935–1974)Freddie Chaplain (1965–1978)James Henderson (1978–1990)Ian Robinson (1990–2002)Stuart Trotter (2008–present)Artist(s)Mary Tourtel (...

American sports executive (born 1969) Mark TatumTatum in 2022Deputy Commissioner and COO of the NBAIncumbentAssumed office February 1, 2014 Personal detailsBorn (1969-10-22) October 22, 1969 (age 54)Vung Tau, VietnamAlma materCornell University This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools ...

 

Athletic programs of Millikin University Millikin Big BlueUniversityMillikin UniversityConferenceCollege Conference of Illinois and WisconsinNCAADivision IIIAthletic directorCraig WhiteLocationDecatur, IllinoisVarsity teams23 (12 men's and 11 women's)Football stadiumFrank M. Lindsay FieldBasketball arenaGriswold CenterBaseball stadiumWorkman Family Baseball FieldSoftball stadiumWorkman Family Softball FieldSoccer stadiumFrank M. Lindsay FieldOther venuesDecatur Indoor Sports CenterFairview Pa...

 

Deep Space 1 dan Dawn menggunakan NSTAR, mesin propulsi ion elektrostatis bertenaga surya New Millennium Program (NMP) adalah sebuah proyek NASA dengan fokus pada validasi rekayasa teknologi baru untuk aplikasi ruang angkasa. Pendanaan untuk program ini tersingkir dari anggaran FY2009 oleh 110th Kongres Amerika Serikat, secara efektif menyebabkan pembatalan.[1] Pesawat ruang angkasa di New Millennium Program awalnya bernama Deep Space (untuk misi menunjukkan teknologi untuk misi plane...

ウィロビー・ハミルトン Willoughby Hamilton ウィロビー・ハミルトン基本情報フルネーム Willoughby James Hamilton国籍 アイルランド出身地 同・キルデア県モナスタヴァン生年月日 (1864-12-09) 1864年12月9日没年月日 (1943-09-27) 1943年9月27日(78歳没)死没地 同・ダブリン身長 175 センチメートル4大大会最高成績・シングルス全英 優勝(1888・90)優勝回数 2(英2)■テンプレート ...

 

Iis SugiantoLahirIstiningdyah Sugianto17 November 1961 (umur 62)Jakarta, IndonesiaKebangsaanIndonesiaNama lainIis SugiantoAlmamaterUniversitas Kristen IndonesiaPekerjaanPenyanyiaktrispolitikusTahun aktif1978–sekarangPartai politik Partai Gerakan Indonesia Raya (2014–2018) Partai Demokrasi Indonesia Perjuangan (2019–sekarang) Suami/istri Rizal Arsyad Abdullah Iskandar ​ ​(m. 1995; c. 2012)​ Anak3KerabatNani Sugianto (adik)Kel...

 

417 620 Dukuh Atas 2 Halte TransjakartaHalte Dukuh Atas 2 setelah direvitalisasi, 2023LetakKotaJakarta SelatanDesa/kelurahanSetiabudi, SetiabudiKodepos12910AlamatJalan Setiabudi TengahKoordinat6°12′16″S 106°49′25″E / 6.20431°S 106.82356°E / -6.20431; 106.82356Koordinat: 6°12′16″S 106°49′25″E / 6.20431°S 106.82356°E / -6.20431; 106.82356Desain HalteStruktur BRT, median jalan bebas 1 tengah Pintu masukMelalui rampa di ...

Lucifer PeakLucifer Peak, south aspectHighest pointElevation2,726 m (8,944 ft)[1]Prominence116 m (381 ft)[1]Parent peakDevils Dome (2769 m)[1]ListingMountains of British ColumbiaCoordinates49°49′28″N 117°44′04″W / 49.82444°N 117.73444°W / 49.82444; -117.73444[2]GeographyLucifer PeakLocation of Lucifer Peak in British ColumbiaShow map of British ColumbiaLucifer PeakLucifer Peak (Canada)Show map of...

 

BBC MundoTypeWebsiteCountryUnited KingdomAvailabilityWorldwideEndowmentForeign and Commonwealth Office, UKOwnerBBCKey peopleJulia ZapataLaunch date1938Official websitewww.bbc.com/mundo BBC Mundo (Spanish for BBC World), previously known as the BBC Latin American Service, is part of the BBC World Service's foreign language output, one of 40 languages it provides. History The first BBC broadcast in Spanish took place on 14 March 1938, when the BBC's Latin American Service (el Servicio Latinoame...

 

  此條目介紹的是簡稱「中壢家商」的學校。关于簡稱「中壢高商」的學校,请见「桃園市立中壢商業高級中等學校」。 此條目需要补充更多来源。 (2022年6月24日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:桃園市立中壢家事商業高級中等學校 — 网页、新闻、书籍、学...

German-Swedish painter Lotte LasersteinLotte Laserstein painting Evening over Potsdam photographed by Wanda von Debschitz-Kunowski in 1930Born(1898-11-28)28 November 1898Preussisch Holland, East Prussia, German EmpireDied21 January 1993(1993-01-21) (aged 94)Kalmar, SwedenNationalityGerman-SwedishKnown forPaintingAwardsGold Medal, Berlin Art Academy, 1925 Lotte Laserstein (28 November 1898 – 21 January 1993) was a German-Swedish painter.[1] She was an artist of figurative p...

 

Puchar świata w rugbyMistrzostwa świata w rugby Puchar Świata Oficjalny skrót RWC Dyscyplina rugby union Organizator rozgrywek World Rugby Data założenia 1987 Przekształconana zawodową 1995 Rozgrywki Liczba drużyn 20 Zwycięzcy Pierwszy zwycięzca  Nowa Zelandia (1987) Obecny zwycięzca  Południowa Afryka (2023) Najwięcej zwycięstw  Południowa Afryka (4) Strona internetowa Puchar świata w rugby, mistrzostwa świata w rugby (ang. Rugby World Cup) – międzynarodow...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!