Lebesgue differentiation theorem

In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis, which states that for almost every point, the value of an integrable function is the limiting average taken around the point. The theorem is named for Henri Lebesgue.

Statement

For a Lebesgue integrable real or complex-valued function f on Rn, the indefinite integral is a set function which maps a measurable set A to the Lebesgue integral of , where denotes the characteristic function of the set A. It is usually written with λ the n–dimensional Lebesgue measure.

The derivative of this integral at x is defined to be where |B| denotes the volume (i.e., the Lebesgue measure) of a ball B  centered at x, and B → x means that the diameter of B  tends to 0.
The Lebesgue differentiation theorem (Lebesgue 1910) states that this derivative exists and is equal to f(x) at almost every point x ∈ Rn.[1] In fact a slightly stronger statement is true. Note that:

The stronger assertion is that the right hand side tends to zero for almost every point x. The points x for which this is true are called the Lebesgue points of f.

A more general version also holds. One may replace the balls B  by a family of sets U  of bounded eccentricity. This means that there exists some fixed c > 0 such that each set U  from the family is contained in a ball B  with . It is also assumed that every point xRn is contained in arbitrarily small sets from . When these sets shrink to x, the same result holds: for almost every point x,

The family of cubes is an example of such a family , as is the family (m) of rectangles in R2 such that the ratio of sides stays between m−1 and m, for some fixed m ≥ 1. If an arbitrary norm is given on Rn, the family of balls for the metric associated to the norm is another example.

The one-dimensional case was proved earlier by Lebesgue (1904). If f is integrable on the real line, the function is almost everywhere differentiable, with Were defined by a Riemann integral this would be essentially the fundamental theorem of calculus, but Lebesgue proved that it remains true when using the Lebesgue integral.[2]

Proof

The theorem in its stronger form—that almost every point is a Lebesgue point of a locally integrable function f—can be proved as a consequence of the weak–L1 estimates for the Hardy–Littlewood maximal function. The proof below follows the standard treatment that can be found in Benedetto & Czaja (2009), Stein & Shakarchi (2005), Wheeden & Zygmund (1977) and Rudin (1987).

Since the statement is local in character, f can be assumed to be zero outside some ball of finite radius and hence integrable. It is then sufficient to prove that the set

has measure 0 for all α > 0.

Let ε > 0 be given. Using the density of continuous functions of compact support in L1(Rn), one can find such a function g satisfying

It is then helpful to rewrite the main difference as

The first term can be bounded by the value at x of the maximal function for f − g, denoted here by :

The second term disappears in the limit since g is a continuous function, and the third term is bounded by |f(x) − g(x)|. For the absolute value of the original difference to be greater than 2α in the limit, at least one of the first or third terms must be greater than α in absolute value. However, the estimate on the Hardy–Littlewood function says that

for some constant An depending only upon the dimension n. The Markov inequality (also called Tchebyshev's inequality) says that

thus

Since ε was arbitrary, it can be taken to be arbitrarily small, and the theorem follows.

Discussion of proof

The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving the estimate for the Hardy–Littlewood maximal function.

The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity. This follows since the same substitution can be made in the statement of the Vitali covering lemma.

Discussion

This is an analogue, and a generalization, of the fundamental theorem of calculus, which equates a Riemann integrable function and the derivative of its (indefinite) integral. It is also possible to show a converse – that every differentiable function is equal to the integral of its derivative, but this requires a Henstock–Kurzweil integral in order to be able to integrate an arbitrary derivative.

A special case of the Lebesgue differentiation theorem is the Lebesgue density theorem, which is equivalent to the differentiation theorem for characteristic functions of measurable sets. The density theorem is usually proved using a simpler method (e.g. see Measure and Category).

This theorem is also true for every finite Borel measure on Rn instead of Lebesgue measure (a proof can be found in e.g. (Ledrappier & Young 1985)). More generally, it is true of any finite Borel measure on a separable metric space such that at least one of the following holds:

A proof of these results can be found in sections 2.8–2.9 of (Federer 1969).

See also

References

  1. ^ Folland, G. B. (1999). Real analysis : modern techniques and their applications (2 ed.). New York: Wiley. pp. Chapter 3. ISBN 0-471-31716-0. OCLC 39849337.
  2. ^ McDonald, John N. (2013). A course in real analysis. N. A. Weiss (2 ed.). Boston, Mass.: Academic Press/Elsevier. ISBN 978-0-12-387774-1. OCLC 754105634.

Read other articles:

الموطن الأصلي للمكاو القُرمزي هو كوستاريكا. تشملُ الحياة البرية في كوستاريكا جميع الحيوانات والفطريات والنباتات الطبيعية الموجودة في هذا البلد الواقعِ في أمريكا الوسطى. تضمُّ كوستاريكا مجموعةً كبيرةً ومتنوعةً من الحيوانات البرية؛ ويُعزى ذلك إلى حدٍ كبيرٍ إلى موقعها الجغ

 

Acara penutupanOlimpiade Musim Panas 2016Tanggal21 Agustus 2016 (2016-08-21)Waktu20.00 – 22.50 BRT (UTC-3)(2 jam, 50 menit)LokasiMaracanã Stadium, Rio de Janeiro, BrasilKoordinat22°54′43.80″S 43°13′48.59″W / 22.9121667°S 43.2301639°W / -22.9121667; -43.2301639Koordinat: 22°54′43.80″S 43°13′48.59″W / 22.9121667°S 43.2301639°W / -22.9121667; -43.2301639Direkam olehRede Globo dan OBS Acara penutupan Olimpiade Musim P...

 

 凡例藤原 清河 藤原清河『前賢故実』より時代 奈良時代生誕 不詳死没 不詳別名 河清(唐名)官位 従三位、参議、常陸守、贈従一品主君 聖武天皇→孝謙天皇氏族 藤原北家父母 父:藤原房前、母:片野朝臣の娘兄弟 鳥養、永手、真楯、清河、魚名、宇比良古、御楯、楓麻呂、北殿、藤原豊成室子 喜娘特記事項 遣唐大使として入唐後は唐朝に仕える。テンプレートを

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2019) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

 

Cet article est une ébauche concernant Paris. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir d'Ornano et Ornano (homonymie). 18e arrtSquare Ornano La voie en août 2021. Situation Arrondissement 18e Quartier Clignancourt Début 14, boulevard Ornano Fin En impasse Morphologie Longueur 66 m Largeur 6 m Historique Création 1902 Dénomination 1902 Géocodification V...

 

Pour les articles homonymes, voir Cox. Sara CoxBiographieNaissance Vers 1990Nationalité britanniqueFormation Université Napier d'ÉdimbourgClyst Vale Community College (en)Activités Joueuse de rugby à XV, arbitre de rugby à XV, arbitre de rugby à septAutres informationsSport Rugby à XVmodifier - modifier le code - modifier Wikidata Sara Cox (née en 1990 ou 1991)[1] est une arbitre de rugby à XV anglaise et ancienne joueuse. En 2016, elle devient la première femme arbitre de rugby pr...

جزء من سلسلة مقالات سياسة الكويتالكويت الدستور الدستور المجلس التأسيسي حقوق الإنسان الإمارة الأسرة الحاكمة الأمير نواف الأحمد الجابر الصباح ولي العهد مشعل الأحمد الجابر الصباح الحكومة الحكومة رئيس الوزراء أحمد النواف الأحمد الصباح السلطة التشريعية مجلس الأمة رئيس المجل

 

Artikel ini bukan mengenai Vaishali Takkar. Vaishali ThakkarThakkar grace Mumbai Police & NGO kids functionLahirVaishali Thakkar25 JulyMumbai, Maharashtra, IndiaKebangsaanIndiaPekerjaanActress Vaishali Thakkar[1] (Hindi: वैशाली ठक्कर; born 25 July in Bombay) adalah aktris asal India yang dikenal lewat perannya sebagai Damini Rajendra barti di serial Uttaran. Biografi Vaishali Thakkar lahir pada 25 Juli di Mumbai . Dia adalah seorang aktris televisi India ...

 

Levantamento de peso nosJogos Pan-Americanos de 2011 Masculino Feminino -56 kg -48 kg -62 kg -53 kg -69 kg -58 kg -77 kg -63 kg -85 kg -69 kg -94 kg -75 kg -105 kg +75 kg +105 kg A categoria até 58 kg feminino do levantamento de peso nos Jogos Pan-Americanos de 2011 foi disputada em 24 de outubro no Fórum de Halterofilismo com cinco halterofilistas de quatro países. Calendário Horário local (UTC-6). Data Horário Fase 24 de outubro 16:00 Final Medalhistas Ouro ECU María Escobar Pra...

إفرو    شعار الاسم الرسمي (بالفرنسية: Évreux)‏    الإحداثيات 49°01′24″N 1°09′09″E / 49.023333333333°N 1.1525°E / 49.023333333333; 1.1525[1]  [2] تقسيم إداري  البلد فرنسا[3][4]  التقسيم الأعلى أور  عاصمة لـ أور  خصائص جغرافية  المساحة 26.46 كيلومتر مربع[1]...

 

Chess variant for three players This article is about the three-player variant by Dekle. For Dekle's two-player variant, see Triangular Chess § Tri-chess. For three-player chess variants in general, see Three-player chess. Tri-chess gameboard and starting position. In the diagram, chancellors are represented by rook and knight combined; cardinals are represented by bishop and knight combined. Tri-chess is the name of a chess variant for three players invented by George R. Dekle Sr. in 1...

 

List of German monarchs This article is about monarchs ruling over Germany after the 843 Treaty of Verdun. For ancient German/Germanic kings before the treaty, see List of Frankish kings. German kingdom (blue) in the Holy Roman Empire around 1000 This is a list of monarchs who ruled over East Francia, and the Kingdom of Germany (Latin: Regnum Teutonicum), from the division of the Frankish Empire in 843 and the collapse of the Holy Roman Empire in 1806 until the collapse of the German Empire i...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2022) مصرف الشرق الأوسط العراقي للاستثمارمصرف الشرق الأوسط العراقي للاستثمارمعلومات عامةالتأسيس 1993النوع مؤسسة ماليةالمقر الرئيسي بغداد  العراقالمنظومة الاق...

 

The History of Dover, because of the town's proximity to the Continent begins when Stone Age people crossed what was then a land bridge, before the opening up of the English Channel. Since then, successive invasions of peoples have taken place. Archaeological finds have revealed a great deal, particularly about cross channel trade and the attempts of those various inhabitants to build large-scale defences against European invaders on this part of the English coast. In more modern times the em...

 

German opera singer You can help expand this article with text translated from the corresponding article in German. (January 2022) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text int...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. DaisyDaisy, Juli 2018LahirYoo Jeong Ahn (유정안)22 Januari 1999 (umur 24)Seoul, Korea SelatanKebangsaanKanada, Korea SelatanPekerjaanpenyanyirapperKarier musikGenreK-popInstrumenVokalTahun aktif2015–2020LabelMLDArtis terkaitMomoland (2017-20...

 

Phonology of the Latin language This article is about Latin phonology and orthography. For English pronunciation of Latin words, see Traditional English pronunciation of Latin. Transcription of Appius Claudius in Roman square capitals.[note 1] The words are separated by engraved dots, a common but by no means universal practice,[note 2] and some of the long vowels (e.g., in TVSCÓRVM) are marked by apices. This article contains phonetic transcriptions in the International Phon...

 

The principal mass of a mountain This article is about a geological formation. For other uses, see Massif (disambiguation). Not to be confused with Mountain or Mountain range. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Massif – news · newspapers · books · scholar · JSTOR (October 2010) (Learn how and wh...

Canadian politician For other uses, see George Murdoch (disambiguation). George Murdoch1st Mayor of CalgaryIn officeDecember 4, 1884 – October 21, 1886Preceded byoffice createdSucceeded byGeorge Clift KingTown of Calgary Councillor/AldermanIn officeJanuary 21, 1889 – January 20, 1890In officeJanuary 7, 1895 – January 6, 1896 Personal detailsBorn(1850-04-29)April 29, 1850Paisley, ScotlandDiedFebruary 2, 1910(1910-02-02) (aged 59)Calgary, Alberta George Mur...

 

See also Margaret Stewart. Dauphine of France Margaret of ScotlandDauphine of FranceBorn25 December 1424PerthDied16 August 1445(1445-08-16) (aged 20)Châlons-sur-Marne, FranceBurialSaint-Laon church, Thouars, FranceSpouse Louis, Dauphin of France ​ ​(m. 1436)​HouseStewartFatherJames I of ScotlandMotherJoan Beaufort Margaret Stewart (French: Marguerite; 25 December 1424 – 16 August 1445) was a princess of Scotland and the dauphine of France. She was t...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!