Share to: share facebook share twitter share wa share telegram print page

Normal subgroup

In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup)[1] is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and . The usual notation for this relation is .

Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of are precisely the kernels of group homomorphisms with domain , which means that they can be used to internally classify those homomorphisms.

Évariste Galois was the first to realize the importance of the existence of normal subgroups.[2]

Definitions

A subgroup of a group is called a normal subgroup of if it is invariant under conjugation; that is, the conjugation of an element of by an element of is always in .[3] The usual notation for this relation is .

Equivalent conditions

For any subgroup of , the following conditions are equivalent to being a normal subgroup of . Therefore, any one of them may be taken as the definition.

  • The image of conjugation of by any element of is a subset of ,[4] i.e., for all .
  • The image of conjugation of by any element of is equal to [4] i.e., for all .
  • For all , the left and right cosets and are equal.[4]
  • The sets of left and right cosets of in coincide.[4]
  • Multiplication in preserves the equivalence relation "is in the same left coset as". That is, for every satisfying and , we have .
  • There exists a group on the set of left cosets of where multiplication of any two left cosets and yields the left coset (this group is called the quotient group of modulo , denoted ).
  • is a union of conjugacy classes of .[2]
  • is preserved by the inner automorphisms of .[5]
  • There is some group homomorphism whose kernel is .[2]
  • There exists a group homomorphism whose fibers form a group where the identity element is and multiplication of any two fibers and yields the fiber (this group is the same group mentioned above).
  • There is some congruence relation on for which the equivalence class of the identity element is .
  • For all and . the commutator is in .[citation needed]
  • Any two elements commute modulo the normal subgroup membership relation. That is, for all , if and only if .[citation needed]

Examples

For any group , the trivial subgroup consisting of only the identity element of is always a normal subgroup of . Likewise, itself is always a normal subgroup of (if these are the only normal subgroups, then is said to be simple).[6] Other named normal subgroups of an arbitrary group include the center of the group (the set of elements that commute with all other elements) and the commutator subgroup .[7][8] More generally, since conjugation is an isomorphism, any characteristic subgroup is a normal subgroup.[9]

If is an abelian group then every subgroup of is normal, because . More generally, for any group , every subgroup of the center of is normal in (in the special case that is abelian, the center is all of , hence the fact that all subgroups of an abelian group are normal). A group that is not abelian but for which every subgroup is normal is called a Hamiltonian group.[10]

A concrete example of a normal subgroup is the subgroup of the symmetric group , consisting of the identity and both three-cycles. In particular, one can check that every coset of is either equal to itself or is equal to . On the other hand, the subgroup is not normal in since .[11] This illustrates the general fact that any subgroup of index two is normal.

As an example of a normal subgroup within a matrix group, consider the general linear group of all invertible matrices with real entries under the operation of matrix multiplication and its subgroup of all matrices of determinant 1 (the special linear group). To see why the subgroup is normal in , consider any matrix in and any invertible matrix . Then using the two important identities and , one has that , and so as well. This means is closed under conjugation in , so it is a normal subgroup.[a]

In the Rubik's Cube group, the subgroups consisting of operations which only affect the orientations of either the corner pieces or the edge pieces are normal.[12]

The translation group is a normal subgroup of the Euclidean group in any dimension.[13] This means: applying a rigid transformation, followed by a translation and then the inverse rigid transformation, has the same effect as a single translation. By contrast, the subgroup of all rotations about the origin is not a normal subgroup of the Euclidean group, as long as the dimension is at least 2: first translating, then rotating about the origin, and then translating back will typically not fix the origin and will therefore not have the same effect as a single rotation about the origin.

Properties

  • If is a normal subgroup of , and is a subgroup of containing , then is a normal subgroup of .[14]
  • A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8.[15] However, a characteristic subgroup of a normal subgroup is normal.[16] A group in which normality is transitive is called a T-group.[17]
  • The two groups and are normal subgroups of their direct product .
  • If the group is a semidirect product , then is normal in , though need not be normal in .
  • If and are normal subgroups of an additive group such that and , then .[18]
  • Normality is preserved under surjective homomorphisms;[19] that is, if is a surjective group homomorphism and is normal in , then the image is normal in .
  • Normality is preserved by taking inverse images;[19] that is, if is a group homomorphism and is normal in , then the inverse image is normal in .
  • Normality is preserved on taking direct products;[20] that is, if and , then .
  • Every subgroup of index 2 is normal. More generally, a subgroup, , of finite index, , in contains a subgroup, normal in and of index dividing called the normal core. In particular, if is the smallest prime dividing the order of , then every subgroup of index is normal.[21]
  • The fact that normal subgroups of are precisely the kernels of group homomorphisms defined on accounts for some of the importance of normal subgroups; they are a way to internally classify all homomorphisms defined on a group. For example, a non-identity finite group is simple if and only if it is isomorphic to all of its non-identity homomorphic images,[22] a finite group is perfect if and only if it has no normal subgroups of prime index, and a group is imperfect if and only if the derived subgroup is not supplemented by any proper normal subgroup.

Lattice of normal subgroups

Given two normal subgroups, and , of , their intersection and their product are also normal subgroups of .

The normal subgroups of form a lattice under subset inclusion with least element, , and greatest element, . The meet of two normal subgroups, and , in this lattice is their intersection and the join is their product.

The lattice is complete and modular.[20]

Normal subgroups, quotient groups and homomorphisms

If is a normal subgroup, we can define a multiplication on cosets as follows: This relation defines a mapping . To show that this mapping is well-defined, one needs to prove that the choice of representative elements does not affect the result. To this end, consider some other representative elements . Then there are such that . It follows that where we also used the fact that is a normal subgroup, and therefore there is such that . This proves that this product is a well-defined mapping between cosets.

With this operation, the set of cosets is itself a group, called the quotient group and denoted with There is a natural homomorphism, , given by . This homomorphism maps into the identity element of , which is the coset ,[23] that is, .

In general, a group homomorphism, sends subgroups of to subgroups of . Also, the preimage of any subgroup of is a subgroup of . We call the preimage of the trivial group in the kernel of the homomorphism and denote it by . As it turns out, the kernel is always normal and the image of , is always isomorphic to (the first isomorphism theorem).[24] In fact, this correspondence is a bijection between the set of all quotient groups of , , and the set of all homomorphic images of (up to isomorphism).[25] It is also easy to see that the kernel of the quotient map, , is itself, so the normal subgroups are precisely the kernels of homomorphisms with domain .[26]

See also

Notes

  1. ^ In other language: is a homomorphism from to the multiplicative subgroup , and is the kernel. Both arguments also work over the complex numbers, or indeed over an arbitrary field.

References

  1. ^ Bradley 2010, p. 12.
  2. ^ a b c Cantrell 2000, p. 160.
  3. ^ Dummit & Foote 2004.
  4. ^ a b c d Hungerford 2003, p. 41.
  5. ^ Fraleigh 2003, p. 141.
  6. ^ Robinson 1996, p. 16.
  7. ^ Hungerford 2003, p. 45.
  8. ^ Hall 1999, p. 138.
  9. ^ Hall 1999, p. 32.
  10. ^ Hall 1999, p. 190.
  11. ^ Judson 2020, Section 10.1.
  12. ^ Bergvall et al. 2010, p. 96.
  13. ^ Thurston 1997, p. 218.
  14. ^ Hungerford 2003, p. 42.
  15. ^ Robinson 1996, p. 17.
  16. ^ Robinson 1996, p. 28.
  17. ^ Robinson 1996, p. 402.
  18. ^ Hungerford 2013, p. 290.
  19. ^ a b Hall 1999, p. 29.
  20. ^ a b Hungerford 2003, p. 46.
  21. ^ Robinson 1996, p. 36.
  22. ^ Dõmõsi & Nehaniv 2004, p. 7.
  23. ^ Hungerford 2003, pp. 42–43.
  24. ^ Hungerford 2003, p. 44.
  25. ^ Robinson 1996, p. 20.
  26. ^ Hall 1999, p. 27.

Bibliography

  • Bergvall, Olof; Hynning, Elin; Hedberg, Mikael; Mickelin, Joel; Masawe, Patrick (16 May 2010). "On Rubik's Cube" (PDF). KTH.
  • Cantrell, C.D. (2000). Modern Mathematical Methods for Physicists and Engineers. Cambridge University Press. ISBN 978-0-521-59180-5.
  • Dõmõsi, Pál; Nehaniv, Chrystopher L. (2004). Algebraic Theory of Automata Networks. SIAM Monographs on Discrete Mathematics and Applications. SIAM.
  • Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
  • Fraleigh, John B. (2003). A First Course in Abstract Algebra (7th ed.). Addison-Wesley. ISBN 978-0-321-15608-2.
  • Hall, Marshall (1999). The Theory of Groups. Providence: Chelsea Publishing. ISBN 978-0-8218-1967-8.
  • Hungerford, Thomas (2003). Algebra. Graduate Texts in Mathematics. Springer.
  • Hungerford, Thomas (2013). Abstract Algebra: An Introduction. Brooks/Cole Cengage Learning.
  • Judson, Thomas W. (2020). Abstract Algebra: Theory and Applications.
  • Robinson, Derek J. S. (1996). A Course in the Theory of Groups. Graduate Texts in Mathematics. Vol. 80 (2nd ed.). Springer-Verlag. ISBN 978-1-4612-6443-9. Zbl 0836.20001.
  • Thurston, William (1997). Levy, Silvio (ed.). Three-dimensional geometry and topology, Vol. 1. Princeton Mathematical Series. Princeton University Press. ISBN 978-0-691-08304-9.
  • Bradley, C. J. (2010). The mathematical theory of symmetry in solids : representation theory for point groups and space groups. Oxford New York: Clarendon Press. ISBN 978-0-19-958258-7. OCLC 859155300.

Further reading

  • I. N. Herstein, Topics in algebra. Second edition. Xerox College Publishing, Lexington, Mass.-Toronto, Ont., 1975. xi+388 pp.

Read other articles:

Military unit of the Wehrmacht Not to be confused with 21st Army (Wehrmacht) or XXI Mountain Corps (Wehrmacht). XXI Army CorpsXXI. ArmeekorpsActive1940–1941Country Nazi GermanyBranch Heer (Wehrmacht)SizeCorpsEngagementsOperation WeserübungCommandersNotablecommandersNikolaus von FalkenhorstMilitary unit The XXI Army Corps, also at times designated Group Falkenhorst[1] and Group XXI[2], was a corps of the German Heer during World War II. It was first deployed on 10 Augus...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (April 2017) (Learn how and when to remove this template message) This article relies largely or entirely on a single sour...

МуниципалитетСомолиносSomolinos 41°14′42″ с. ш. 3°03′28″ з. д.HGЯO Страна  Испания Автономное сообщество Кастилия-Ла-Манча Провинция Гвадалахара Район Ла-Серрания Глава Рафаэль Анчия Прадильо[d] История и география Площадь 14,79 км² Высота 1239 м Часовой пояс UTC+1:00, ле

The Dark Knight RisesPoster Rilis TeatrikalSutradara Christopher Nolan Produser Emma Thomas Christopher Nolan Charles Roven Ditulis oleh Jonathan Nolan Christopher Nolan SkenarioJonathan NolanChristopher NolanCeritaChristopher NolanDavid S. GoyerBerdasarkanKarakter oleh Bob KanePemeranChristian BaleMichael CaineGary OldmanAnne HathawayTom HardyMarion CotillardJoseph Gordon-LevittMorgan FreemanPenata musikHans ZimmerSinematograferWally PfisterPenyuntingLee SmithPerusahaanproduksiLegendar...

Brasão de armas desenhado por José Wasth Rodrigues. Brasão de armas atual do município de Mogi das Cruzes. O Brasão de armas do município de Mogi das Cruzes foi instituído em 10 de março de 1929, idealizado por Afonso Taunay, e desenhado pelo artista J. Wasth Rodrigues em 1931,[1] a pedido do então Prefeito Eduardo Lejeune.[2] Suas características são: Escudo vermelho com um gibão de armas ao natural, frechado, tal qual ocorre na estampa Combate de Índios Botocudos com Soldados M...

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (July 2018) (Learn how and when to remove this template message) An air pollution source The AP 42 Compilation of Air Pollutant Emission Factors is a compilation of the US Environmental Protection Agency (EPA)'s emission ...

Broome County Courthouse Verwaltung US-Bundesstaat: New York Verwaltungssitz: Binghamton Gründung: 28. März 1806 Gebildet aus: Tioga County Vorwahl: 001 607 Demographie Einwohner: 198.683 (Stand: 2020) Bevölkerungsdichte: 108,69 Einwohner/km2 Geographie Fläche gesamt: 1.853,1 km² Wasserfläche: 25,2 km² Karte Karte von Broome County innerhalb von New York Website: www.gobroomecounty.com Broome County[1] ist ein County im Bundesstaat New York der Vereinigten Staate...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Head Rush TV series – news · newspapers · books · scholar · JSTOR (February 2020) (Learn how and when to remove this template message) Australian TV series or program Head RushGenreDocumentaryScienceCreated byPeter Rees (MythBusters)StarringKari ByronNarrated byRobert LeeComposerNeil SutherlandCo...

Ini adalah sebuah nama Kamboja; nama keluarganya adalah Khieu. Sesuai dengan kebiasaan di Kamboja, tokoh ini harus disebut dengan nama depannya. Khieu SamphanKhieu Samphan Tahun 2014Presiden Negara Presidium Demokratik KampucheaMasa jabatan11 April 1976 – 7 Januari 1979PemimpinPol PotPendahuluNorodom SihanoukPenggantiHeng SamrinPerdana Menteri Demokratik Kampuchea ActingMasa jabatan4 April 1976 – 14 April 1976PresidenNorodom Sihanoukdiri sendiriPendahuluPenn NouthPenggan...

1971 studio album by Joe DassinJoe Dassin (Elle était… Oh !)Studio album by Joe DassinReleased1971 (1971)GenrechansonLabelCBS DisquesProducerJacques PlaitJoe Dassin chronology Joe Dassin (La Fleur aux dents)(1970) Joe Dassin (Elle était… Oh !)(1971) Joe(1972) Singles from Joe Dassin Elle était... Oh !Released: 1972 Bye Bye LouisReleased: 1972 Joe Dassin (commonly called Elle était… Oh ! after the first track on side 2) is the fifth French studio albu...

Wereldkampioenschap voetbal onder 20 – 1989 1989 كأس العالم للشباب تحت 20 سنة Toernooi-informatie Gastland  Saoedi-Arabië Organisator FIFA Editie 7e Datum 16 februari – 3 maart 1989 Teams 16 (van 5 confederaties) Stadions 4 (in 4 gaststeden) Winnaar  Portugal (1e titel) Toernooistatistieken Wedstrijden 32 Doelpunten 81  (2,53 per wedstrijd) Toeschouwers 643.815  (20.119 per wedstrijd) Topscorer(s) Oleg Salenko(5 doelpunten) Beste speler ...

القيامة الآنApocalypse Now (بالإنجليزية)[1] ملصق فيلم القيامة الآنمعلومات عامةالصنف الفني فيلم حربي — فيلم أكشن — فيلم دراما — فيلم مبنى على كتب الموضوع حرب فيتنام تاريخ الصدور 10 مايو 1979 (افتتاح مهرجان كان السينمائي)مدة العرض 153 دقيقة 202 دقيقة قطع المخرج289 دقيقة (الطول الكامل)...

  لمعانٍ أخرى، طالع كريب (توضيح). رسم يُظهر ترسب طبقة الكريب تحت قشرة القمر أثناء مراحل تكونه المبكرة. الكريب في علم الفلك هو مكون جيوكيميائي لبعض الصخور القمرية المدملكة والبازلتية المُنصهرة التي خلفتها الاصطدامات. كلمة كريب هي اختصار إنكليزي مُشتق من حرف «ك» (الرمز ا...

American sex educator, model, and professor Hart advertising for Chromat in 2018 Ericka Hart is an American academic, sex educator, and model.[1][2][3] Early life Hart's mother died of breast cancer when Hart was 13, prompting her family to move from Maryland to Puerto Rico.[2][4] She graduated from the University of Miami in 2008 with a degree in theater and psychology.[5] Hart has a Master’s of Education in Human Sexuality from Widener Unive...

1840 historical novel by James Fenimore Cooper The blessing of Columbus’ sailors before leaving Palos Mercedes of Castile; or, The Voyage to Cathay is an 1840 historical novel by James Fenimore Cooper. The novel is set in 15th-century Europe, and follows the preparations and expedition of Christopher Columbus westward to the new world.[1] Archival materials A full manuscript of the novel is held at the Clifton Waller Barrett Library of American Literature in the Albert and Shirley S...

Mound at Cahokia Mounds in Illinois Mound 34Location within Illinois todayLocationCollinsville, Illinois, Madison County, Illinois,  USARegionMadison County, IllinoisCoordinates38°39′39.06″N 90°3′24.41″W / 38.6608500°N 90.0567806°W / 38.6608500; -90.0567806HistoryCulturesMiddle Mississippian cultureSite notesExcavation dates1950, 1956, 1999-2010,ArchaeologistsJames B. Griffin, Albert Spaulding, Gregory PerinoArchitectureArchitectural sty...

Film trilogy by Lars von Trier Golden Heart trilogyDirected byLars von TrierWritten byLars von TrierRelease dates18 May 1996 (1996-05-18)(Breaking the Waves)20 May 1998 (1998-05-20)(The Idiots)17 May 2000 (2000-05-17)(Dancer in the Dark)CountryDenmarkLanguagesEnglish, Danish The Golden Heart trilogy (Danish: Guldhjerte-trilogien) is three films by the Danish screenwriter and director Lars von Trier. It consists of Breaking the Waves (1996), a melod...

2000 studio album by HeadstonesNickels for Your NightmaresStudio album by HeadstonesReleasedApril 04, 2000GenreAlternative rock, hard rockLength50:32LabelMCAProducerPaul NorthfieldHeadstones chronology Smile and Wave(1997) Nickels for Your Nightmares(2000) The Oracle of Hi-Fi(2002) Nickels for Your Nightmares is the fourth album by the Canadian rock band Headstones. The album featured the hit singles Settle and Blonde & Blue, which reached #4 and #8 on Canada's Rock chart, respect...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Missing Star – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this template message) 2006 filmThe Missing StarDirected byGianni AmelioWritten byGianni Amelio, Umberto ContarelloProduced by01 DistributionStarringSergio...

Italian sprinter Isalbet JuarezPersonal informationNationalityItalianBorn (1987-12-20) 20 December 1987 (age 35)Havana, CubaHeight1.84 m (6 ft 1⁄2 in)Weight72 kg (159 lb)SportCountry ItalySportAthleticsEventSprintClubG.S. Fiamme OroCoached byUmberto PegoraroAchievements and titlesPersonal best 400 m: 46.64 (2012) Medal record Mediterranean Games 2013 Mersin 4×400 m relay European U23 Championships 2009 Kaunas 4×400 m relay Isalbet Juarez (born 20 December...

Kembali kehalaman sebelumnya