Theorem of the gnomon

Gnomon:
Theorem of the Gnomon: green area = red area,

The theorem of the gnomon states that certain parallelograms occurring in a gnomon have areas of equal size.

Theorem

In a parallelogram with a point on the diagonal , the parallel to through intersects the side in and the side in . Similarly the parallel to the side through intersects the side in and the side in . Then the theorem of the gnomon states that the parallelograms and have equal areas.[1][2]

Gnomon is the name for the L-shaped figure consisting of the two overlapping parallelograms and . The parallelograms of equal area and are called complements (of the parallelograms on diagonal and ).[3]

Proof

The proof of the theorem is straightforward if one considers the areas of the main parallelogram and the two inner parallelograms around its diagonal:

  • first, the difference between the main parallelogram and the two inner parallelograms is exactly equal to the combined area of the two complements;
  • second, all three of them are bisected by the diagonal. This yields:[4]

Applications and extensions

geometrical representation of a division
Transferring the ratio of a partition of line segment AB to line segment HG:

The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in algebraic terms. More precisely, if two numbers are given as lengths of line segments one can construct a third line segment, the length of which matches the quotient of those two numbers (see diagram). Another application is to transfer the ratio of partition of one line segment to another line segment (of different length), thus dividing that other line segment in the same ratio as a given line segment and its partition (see diagram).[1]

is the (lower) parallelepiped around the diagonal with and its complements , and have the same volume:

A similar statement can be made in three dimensions for parallelepipeds. In this case you have a point on the space diagonal of a parallelepiped, and instead of two parallel lines you have three planes through , each parallel to the faces of the parallelepiped. The three planes partition the parallelepiped into eight smaller parallelepipeds; two of those surround the diagonal and meet at . Now each of those two parallelepipeds around the diagonal has three of the remaining six parallelepipeds attached to it, and those three play the role of the complements and are of equal volume (see diagram).[2]

General theorem about nested parallelograms

general theorem:
green area = blue area - red area

The theorem of gnomon is special case of a more general statement about nested parallelograms with a common diagonal. For a given parallelogram consider an arbitrary inner parallelogram having as a diagonal as well. Furthermore there are two uniquely determined parallelograms and the sides of which are parallel to the sides of the outer parallelogram and which share the vertex with the inner parallelogram. Now the difference of the areas of those two parallelograms is equal to area of the inner parallelogram, that is:[2]

This statement yields the theorem of the gnomon if one looks at a degenerate inner parallelogram whose vertices are all on the diagonal . This means in particular for the parallelograms and , that their common point is on the diagonal and that the difference of their areas is zero, which is exactly what the theorem of the gnomon states.

Historical aspects

The theorem of the gnomon was described as early as in Euclid's Elements (around 300 BC), and there it plays an important role in the derivation of other theorems. It is given as proposition 43 in Book I of the Elements, where it is phrased as a statement about parallelograms without using the term "gnomon". The latter is introduced by Euclid as the second definition of the second book of Elements. Further theorems for which the gnomon and its properties play an important role are proposition 6 in Book II, proposition 29 in Book VI and propositions 1 to 4 in Book XIII.[5][4][6]

References

  1. ^ a b Halbeisen, Lorenz; Hungerbühler, Norbert; Läuchli, Juan (2016), Mit harmonischen Verhältnissen zu Kegelschnitten: Perlen der klassischen Geometrie, Springer, pp. 190–191, ISBN 9783662530344
  2. ^ a b c Hazard, William J. (1929), "Generalizations of the Theorem of Pythagoras and Euclid's Theorem of the Gnomon", The American Mathematical Monthly, 36 (1): 32–34, doi:10.1080/00029890.1929.11986904, JSTOR 2300175
  3. ^ Tropfke, Johannes (2011-10-10), Ebene Geometrie (in German), Walter de Gruyter, pp. 134–135, ISBN 978-3-11-162693-2
  4. ^ a b Herz-Fischler, Roger (2013-12-31), A Mathematical History of the Golden Number, Courier Corporation, pp. 35–36, ISBN 978-0-486-15232-5
  5. ^ Vighi, Paolo; Aschieri, Igino (2010), "From Art to Mathematics in the Paintings of Theo van Doesburg", in Vittorio Capecchi; Massimo Buscema; Pierluigi Contucci; Bruno D'Amore (eds.), Applications of Mathematics in Models, Artificial Neural Networks and Arts, Springer, pp. 601–610, esp. pp. 603–606, ISBN 9789048185818
  6. ^ Evans, George W. (1927), "Some of Euclid's Algebra", The Mathematics Teacher, 20 (3): 127–141, doi:10.5951/MT.20.3.0127, JSTOR 27950916

Read other articles:

Horst-Graben-Struktur in einer Dehnungszone Horst-Graben-Struktur, Département Hérault, Frankreich Ein geologischer Graben wird durch einen Krustenblock gebildet, der von Abschiebungen begrenzt ist und im Vergleich zu seiner Umgebung abgesunken ist. Gräben treten als Folge tektonischer Dehnung in Schwächezonen der Erdkruste auf, stets zusammen mit tektonischen Horsten (herausgehobenen Erdschollen). Zuweilen sind die Sedimentgesteine, die die Gräben auffüllen, härter als die Gesteine de...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) كاترين كول معلومات شخصية الميلاد 12 سبتمبر 1950 (73 سنة)  مواطنة أستراليا  الحياة العملية المهنة بروفيسورة  اللغات الإنجليزية  تعديل مصدري - تعديل   كا

 

 

Japanese science fiction novel series by Hiroyuki Morioka Banner of the StarsCover of Banner of the Stars I featuring main heroine Lafiel星界の戦旗(Seikai no Senki)GenreSpace opera, military science fiction Novel seriesWritten byHiroyuki MoriokaIllustrated byToshihiro Ono (first three volumes) Takami Akai (from volume four)Published byHayakawa PublishingEnglish publisherJ-Novel ClubOriginal runDecember 1996 – presentVolumes6 (List of volumes) Anime television seriesDirec...

American anti-Vietnam War protester (1933–1965) Norman MorrisonBorn(1933-12-29)December 29, 1933Erie, Pennsylvania, U.S.DiedNovember 2, 1965(1965-11-02) (aged 31)The Pentagon, Arlington County, Virginia, U.S.Cause of deathSelf-immolated to protest American involvement in the Vietnam WarNationalityAmericanAlma materCollege of WoosterSpouseAnne WelshChildren3 Norman R. Morrison[1] (December 29, 1933 – November 2, 1965) was an American anti-war activist. On November 2,...

 

 

صالح فرحان معلومات شخصية الاسم الكامل صالح أحمد فرحان الميلاد 1 يناير 1981 (العمر 42 سنة)البحرين  الطول 1.85 م (6 قدم 1 بوصة) مركز اللعب الوسط المحوري الجنسية البحرين  معلومات النادي النادي الحالي الرفاع المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2003–2004 الرفاع 2005 قطر 2005–2007...

 

 

De invloed van het diafragma op de scherptediepte In de optica is een diafragma een (meestal ronde of veelhoekige) opening in de lichtbaan van een lens of objectief die een bepaalde hoeveelheid licht door kan laten of tegenhouden. Het midden van het diafragma valt samen met de optische as van de binnenvallende lichtbundel in het instrument of objectief. Robert Hooke paste als eerste een diafragma of mechanische iris toe in zijn microscoop. Veel fototoestellen hebben een verstelbaar diafragma ...

Australian artist, researcher, and educator This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources: Hugh Davies artist – news · newspapers · books · scholar · JSTOR (October 2019) (Learn how and when to ...

 

 

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (November 2018) (Learn how and when to remove this template message) Pokfield Road Bus Terminus蒲飛路巴士總站General informationLocationIntersection of Pok Fu Lam Road and Pokfield RoadPok Fu Lam Road(Mount Davis Road to Sai Ying Pun)Central and WesternBus routes T...

 

 

For other uses, see Longsword (disambiguation). Sword (two-handed, double-edged) Longsword Hand-and-a-half sword, probably German, c. 1400–1430[1]TypeSword (two-handed, double-edged)Place of originEuropeService historyIn serviceHigh Middle Ages, Late Middle Ages, Renaissance, c. 1100–1700Production historyProduced~1100–1500SpecificationsMassavg. 1.1–2 kg (2.4–4.4 lb)Lengthtotal: avg. 100–140 cm (39–55 in) blade: avg. 80–110...

Industrial Manufacturer KEMET CorporationTypeSubsidiaryIndustryElectronicsFounded1919HeadquartersFort Lauderdale, Florida, U.S.ProductsCapacitors & Electronic ComponentsParentYageo CorporationWebsitewww.kemet.com KEMET Corporation, a subsidiary of Yageo Corporation (TAIEX: 2327), manufactures a broad selection of capacitor technologies such as tantalum, aluminum, multilayer ceramic, film, paper, polymer electrolytic, and supercapacitors. KEMET also manufacturers a variety of other passive...

 

 

1944 film This article is about the 1944 drama film. For the 2016 thriller film, see American Romance. An American RomanceDirected byKing VidorWritten byLouis Adamic(uncredited)Screenplay byHerbert DalmasWilliam LudwigStory byKing VidorProduced byKing VidorStarringBrian DonlevyAnn RichardsNarrated byHorace McNallyCinematographyHarold RossonEdited byConrad A. NervigMusic byLouis GruenbergNathaniel Shilkret(uncredited)ProductioncompanyMetro-Goldwyn-MayerDistributed byLoew's Inc.[1]Relea...

 

 

Siempat Nempu HuluKecamatanKantor Kecamatan Siempat Nempu HuluPeta lokasi Kecamatan Siempat Nempu HuluNegara IndonesiaProvinsiSumatera UtaraKabupatenDairiPemerintahan • CamatKoko Mulianto Angkat[1]Populasi (2021)[2] • Total20.183 jiwa • Kepadatan215/km2 (560/sq mi)Kode pos22254Kode Kemendagri12.11.07 Kode BPS1210080 Luas93,93 km²Desa/kelurahan12 desa Siempat Nempu Hulu adalah sebuah kecamatan yang berada di Kabupaten Dairi, p...

Pemandangan Lembah Napu Lembah Napu (bahasa Inggris: Napu Valley), adalah sebuah lembah yang meliputi wilayah desa Sedoa, Wuasa, Wanga dan Watutau di kecamatan Lore Utara dan Lore Peore, Kabupaten Poso, Sulawesi Tengah. Lembah ini merupakan wilayah penyangga dari Taman Nasional Lore Lindu pada wilayah kerja Taman Nasional Lore Lindu (TNLL) Bidang Pengelolaan Wilayah III Poso, dan berjarak sekitar 105 kilometer dari Kota Palu.[1] Wilayah Lembah Napu, bersama dengan beberapa kecamat...

 

 

This article is about the serif typeface. For other uses, see Footlight (disambiguation). Typeface FootlightCategorySerifDesigner(s)Ong Chong WahFoundryMonotype CorporationDate released1986 Footlight is a serif typeface designed by Malaysian type designer Ong Chong Wah in 1986[1] for the Monotype Corporation.[2][3] Footlight is an irregular design. It is sold in weights from light to extra-bold with matching italics. It was originally designed as an italic font, a roma...

 

 

世界 > アジア > 東アジア > 日本 > 南西諸島 > 琉球諸島 > 沖縄本島 沖縄島(沖縄本島) 2015年1月、ISSから撮影 日本の地図を表示南西諸島の地図を表示地理場所 東シナ海・フィリピン海(太平洋)座標 北緯26度00分 - 27度00分東経127度30分 - 128度30分諸島 南西諸島(沖縄諸島)[1]面積 1,207.00 km2 (466.03 sq mi)(国土地理院、202...

Peta menunjukkan lokasi Gasan Gasan adalah munisipalitas yang terletak di provinsi Marinduque, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 31.966 jiwa atau 7.730 rumah tangga. Pembagian wilayah Secara administratif Gasan terbagi menjadi 25 barangay, yaitu: Antipolo Bachao Ibaba Bachao Ilaya Bacong-Bacong Bahi Bangbang Banot Banuyo Bognuyan Cabugao Dawis Dili Libtangin Mahunig Mangiliol Masiga Matandang Gasan Pangi Pinggan Tabionan Tapuyan Tiguion Sarana pendidikan S...

 

 

Hach Ahmed Bericalla Hach AhmedInformación personalNacimiento 1957 Río de Oro (Sahara Occidental) Información profesionalOcupación Político y diplomático Partido político Frente Polisario (1974-2019)[editar datos en Wikidata] Hach Ahmed Bericalla también conocido como Hach Uld Ahmed (Villa Cisneros, Sahara español, 1957) es un político y diplomático saharaui. Desde 26 de abril de 2020 es Primer Secretario del Movimiento Saharauis por la Paz[1]​ creado en abril de 20...

 

 

Lolo GedangDesaNegara IndonesiaProvinsiJambiKabupatenKerinciKecamatanBukit KermanKode pos37176Kode Kemendagri15.01.20.2002 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Lolo Gedang adalah sebuah desa yang berada di wilayah Kecamatan Bukit Kerman, Kabupaten Kerinci, Provinsi Jambi, Indonesia. Tempat menarik Lumbung padi di Lolo Gedang pada masa Hindia Belanda Situs Lolo Gedang Kebun Jeruk Sungai di tengah Desa Gedung Serba Guna lbsKecamatan Bukit Kerman, Kabupaten Kerinci, Jam...

Para la versión femenina, véase Veenendaal Veenendaal Classic Femenina. Veenendaal Veenendaal Classic Ciclismo en ruta Salida de la prueba en 2005Datos generalesPaís Países Bajos Países BajosCategoría UCI Europe Tour 1.1Fecha MayoCreación 1985Edición 37.ª (a 2024)Formato Carrera de un díaEquipos participantes UCI WorldTeamUCI ProTeamContinentalesSelecciones nacionales PalmarésMás victorias Dylan Groenewegen (5)Ganador actual Tord Gudmestad (2024)Sitio oficial [editar da...

 

 

Film Titel Einmal eine große Dame sein Produktionsland Deutschland Originalsprache Deutsch Erscheinungsjahr 1957 Länge 98 Minuten Altersfreigabe FSK 12 Stab Regie Erik Ode Drehbuch Janne FurchWerner EpliniusFritz Böttger (ungenannte Drehbuchbearbeitung) Produktion Artur Brauner Musik Erwin Halletz Kamera Karl Löb Schnitt Kurt Zeunert Besetzung Gudula Blau: Jeannette Heider Grethe Weiser: Elly, ihre Tante Dietmar Schönherr: Stefan Riehl, Journalist Erich Winn: Philipp de Witt Gustl ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!