Menaechmus

Menaechmus
Bornc. 380 BC
Diedc. 320 BC

Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher[1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the parabola and hyperbola.

Life and work

Menaechmus is remembered by mathematicians for his discovery of the conic sections and his solution to the problem of doubling the cube.[2] Menaechmus likely discovered the conic sections, that is, the ellipse, the parabola, and the hyperbola, as a by-product of his search for the solution to the Delian problem.[3] Menaechmus knew that in a parabola y2 = Lx, where L is a constant called the latus rectum, although he was not aware of the fact that any equation in two unknowns determines a curve.[4] He apparently derived these properties of conic sections and others as well. Using this information it was now possible to find a solution to the problem of the duplication of the cube by solving for the points at which two parabolas intersect, a solution equivalent to solving a cubic equation.[4]

In modern notation, let be a hyperbola, and be a parabola, then their intersections are the solutions to . Now set .[5]

There are few direct sources for Menaechmus's work; his work on conic sections is known primarily from an epigram by Eratosthenes, and the accomplishment of his brother (of devising a method to create a square equal in area to a given circle using the quadratrix), Dinostratus, is known solely from the writings of Proclus. Proclus also mentions that Menaechmus was taught by Eudoxus. There is a curious statement by Plutarch to the effect that Plato disapproved of Menaechmus achieving his doubled cube solution with the use of mechanical devices; the proof currently known appears to be purely algebraic.

Menaechmus was said to have been the tutor of Alexander the Great; this belief derives from the following anecdote: supposedly, once, when Alexander asked him for a shortcut to understanding geometry, he replied "O King, for traveling over the country, there are royal road and roads for common citizens, but in geometry there is one road for all."[6] However, this quotation is first attested by Stobaeus, about 500 AD, and so whether Menaechmus really taught Alexander is uncertain.

Where precisely he died is uncertain as well, though modern scholars believe that he eventually expired in Cyzicus.

References

  1. ^ Suda, § mu.140
  2. ^ Cooke, Roger (1997). "The Euclidean Synthesis". The History of Mathematics : A Brief Course. New York: Wiley. p. 103. ISBN 9780471180821. Eutocius and Proclus both attribute the discovery of the conic sections to Menaechmus, who lived in Athens in the late fourth century B.C.E. Proclus, quoting Eratosthenes, refers to "the conic section triads of Menaechmus." Since this quotation comes just after a discussion of "the section of a right-angled cone" and "the section of an acute-angled cone", it is inferred that the conic sections were produced by cutting a cone with a plane perpendicular to one of its elements. Then if the vertex angle of the cone is acute, the resulting section (called oxytome) is an ellipse. If the angle is right, the section (orthotome) is a parabola, and if the angle is obtuse, the section (amblytome) is a hyperbola (see Fig. 5.7).
  3. ^ Boyer (1991). "The age of Plato and Aristotle". A History of Mathematics. Wiley. p. 93. ISBN 9780471543978. It was consequently a signal achievement on the part of Menaechmus when he disclosed that curves having the desired property were near at hand. In fact, there was a family of appropriate curves obtained from a single source - the cutting of a right circular cone by a plane perpendicular to an element of the cone. That is, Menaechmus is reputed to have discovered the curves that were later known as the ellipse, the parabola, and the hyperbola. [...] Yet the first discovery of the ellipse seems to have been made by Menaechmus as a mere by-product in a search in which it was the parabola and hyperbola that proffered the properties needed in the solution of the Delian problem.
  4. ^ a b Boyer (1991). "The age of Plato and Aristotle". A History of Mathematics. Wiley. pp. 104–105. ISBN 9780471543978. If OP=y and OD = x are coordinates of point P, we have y2 = R).OV, or, on substituting equals, y2 = R'D.OV = AR'.BC/AB.DO.BC/AB = AR'.BC2/AB2.In as much as segments AR', BC, and AB are the same for all points P on the curve EQDPG, we can write the equation of the curve, a "section of a right-angled cone", as y2=lx, where l is a constant, later to be known as the latus rectum of the curve. [...] Menaechmus apparently derived these properties of the conic sections and others as well. Since this material has a strong resemblance to the use of coordinates, as illustrated above, it has sometimes been maintains that Menaechmus had analytic geometry. Such a judgment is warranted only in part, for certainly Menaechmus was unaware that any equation in two unknown quantities determines a curve. In fact, the general concept of an equation in unknown quantities was alien to Greek thought. [...] He had hit upon the conics in a successful search for curves with the properties appropriate to the duplication of the cube. In terms of modern notation the solution is easily achieved. By shifting the cutting plane (Fig. 6.2), we can find a parabola with any latus rectum. If, then, we wish to duplicate a cube of edge a, we locate on a right-angled cone two parabolas, one with latus rectum a and another with latus rectum 2a. [...] It is probable that Menaechmus knew that the duplication could be achieved also by the use of a rectangular hyperbola and a parabola.
  5. ^ Stillwell, John (2020), "Algebraic Geometry", Mathematics and Its History: A Concise Edition, Undergraduate Texts in Mathematics, Cham: Springer International Publishing, pp. 85–97, doi:10.1007/978-3-030-55193-3_6, ISBN 978-3-030-55193-3, retrieved 2024-04-26
  6. ^ *Beckmann, Petr (1989). A History of Pi (3rd ed.). Dorset Press. p. 34.

Sources

Read other articles:

Лученко Євген Дмитрович Народження 30 липня 1914(1914-07-30)Бахмацький район, УкраїнаСмерть 1998  Київ, УкраїнаЖанр портретДіяльність художникЧлен Національна спілка художників УкраїниНагороди У Вікіпедії є статті про інших людей із прізвищем Лученко. Євген Дмитрович Луче

 

Luigi Ontani, 2017 Luigi Ontani (* 24. November 1943 in Grizzana Morandi) bei Vergato (einem kleinen Dorf im Apennin zwischen Bologna und Florenz) ist ein italienischer Künstler, der in Rom lebt und arbeitet. Zuvor lebte er eine Zeit lang in Bologna. Inhaltsverzeichnis 1 Leben und Werk 2 Einzelausstellungen (Auswahl) 3 Gruppenausstellungen (Auswahl) 4 Literatur 5 Einzelnachweise 6 Weblinks Leben und Werk Ontanis Leben wird von ihm selbst bewusst im Dunkeln gehalten. In vielen Katalogen seine...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: タイの仏教 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年7月) 印刷されているが、薄くスライスした木に書か

Khai mạc Lễ hội Thiết kế Łódź 2012 Łódź Design Festival (Lễ hội thiết kế Łódź) là một lễ hội thiết kế quốc tế diễn ra từ năm 2007 tại Łódź, Ba Lan. Nó trình bày các khía c ạnh khác nhau của thiết kế bao gồm thiết kế công nghiệp, thiết kế nghệ thuật và thủ công, thiết kế đồ họa, thiết kế kiến trúc, thiết kế dịch vụ và thiết kế thời trang.[1] Chương trình Chương tr...

 

Community development block in West Bengal, IndiaRaghunathpur IICommunity development blockLocation in West BengalCoordinates: 23°36′14″N 86°32′57″E / 23.60389°N 86.54917°E / 23.60389; 86.54917Country IndiaStateWest BengalDistrictPuruliaParliamentary constituencyPuruliaAssembly constituencyParaArea • Total197.67 km2 (76.32 sq mi)Elevation156 m (512 ft)Population (2011) • Total113,790 • D...

 

American telenovela Flor SalvajeGenreTelenovelaCreated byPerla FaríasBased onLa novia oscuraby Laura RestrepoWritten by Rossana Negrín José Vicente Spataro Juan Marcos Blanco Basilio Álvarez Story byLaura RestrepoDirected by Mario Mitrotti Agustín Restrepo Creative directorGabriela MonroyStarring Mónica Spear Music byMarco FloresOpening themeOyeme by Marco FloresCountry of originUnited StatesOriginal languageSpanishNo. of episodes150ProductionExecutive producerHugo León FerrerProducers...

ESPNDiluncurkan7 September 1979PemilikThe Walt Disney Company (80%)Hearst Corporation (20%)Kantor pusatBristol, Connecticut, Amerika SerikatSitus webespn.go.comKetersediaan SatelitDirecTV206Dish Network140 (SD)9424 (HD)KabelDisediakan di berbagai TV kabelPeriksa daftar TV kabel lokal ESPN (Entertainment and Sports Programming Network) adalah salah satu televisi kabel olahraga pertama di dunia yang didirikan oleh Scott Rasmussen dan Bill Rasmussen. Sejarah ESPN ESPN berdiri pada 7 September 19...

 

1990 film by Mont Campbell This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: I Bought a Vampire Motorcycle – news · newspapers · books · scholar · JSTOR (December 2021) I Bought a Vampire MotorcycleUK Quad posterDirected byDirk CampbellScreenplay by Mycal Miller John Wolskel[1] Produced by My...

 

American ice hockey player (born 1978) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2023) (Learn how and when to remove this template message) Ice hockey player Robert Esche Esche in 2018Born (1978-01-22) January 22, 1978 (age 45)Whitesboro, New York, U.S.Height 6 ft 2 in (188 cm)Weight 225 lb (102 kg; 16 st 1...

Public college in Kolkata, West Bengal, India This article about higher education may require cleanup. Please review editing advice and help improve this article. (March 2017) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2020) (Learn how and when to remove this template message) Scottish Church CollegeEmblem of the Scottish Church CollegeLatin: Colleg...

 

Convento de las Baronesas Tipo conventoEstado demolido o desaparecidoCalle calle de AlcaláLocalización Madrid (España)Coordenadas 40°25′05″N 3°41′50″O / 40.418141666667, -3.6970972222222[editar datos en Wikidata] El convento de las Baronesas (denominado formalmente convento de la Natividad y San José) fue un convento de monjas carmelitas ubicado en la calle de Alcalá (Madrid) que diseñó y comenzó a construir el maestro de obras Juan de Lobera a medi...

 

GiligentingKecamatanGiligentingPeta lokasi Kecamatan GiligentingTampilkan peta Kabupaten SumenepGiligentingGiligenting (Madura)Tampilkan peta MaduraGiligentingGiligenting (Provinsi Jawa Timur)Tampilkan peta Provinsi Jawa TimurGiligentingGiligenting (Jawa)Tampilkan peta JawaGiligentingGiligenting (Indonesia)Tampilkan peta IndonesiaKoordinat: 7°11′27″S 113°53′53″E / 7.190797°S 113.897957°E / -7.190797; 113.897957Koordinat: 7°11′27″S 113°53′53″Eþ...

Argentine navy officer Julio GuardiaChief of the General Staff of the Argentine NavyIncumbentAssumed office 28 February 2020 Personal detailsBorn (1962-12-14) 14 December 1962 (age 60) Julio Horacio Guardia (born 14 December 1962)[1] is an Argentine navy officer. He serves as Chief of the General Staff of the Argentine Navy as of 28 February 2020[update].[2][3] He graduated from the Naval Academy in 1985.[4] References ^ Jefe del Esta...

 

Biennial yacht race to partially or fully circumnavigate the globe Approaching the starting line on a leg of the Clipper Round the World Yacht Race in Halifax, Nova Scotia, 12 June 2008 The Clipper Round the World Yacht Race is a biennial sailing race that takes paying amateur crews on one or more legs of a circumnavigation of the globe in 11 specially-designed identical yachts owned by Clipper Ventures. Professional skippers and additional qualified persons (AQPs) lead each teams on the 10-m...

 

Negara-negara anggota Perserikatan Bangsa-Bangsa yang merupakan negara berdaulat, meskipun tidak semua negara-negara berdaulat tentu menjadi anggotanya. Negara berdaulat dalam hukum internasional adalah kesatuan yuridis nonfisik yang diwakili oleh satu pemerintah terpusat yang memiliki kedaulatan atas wilayah geografis. Hukum internasional mendefinisikan negara-negara berdaulat sebagai kesatuan yang memiliki penduduk permanen, wilayah tetap, pemerintah, dan kapasitas untuk masuk ke dalam hubu...

Alberto Michelotti Informazioni personali Arbitro di Calcio Sezione Parma Professione Meccanico Attività nazionale Anni Campionato Ruolo 1966-19671967-1981 Serie BSerie A ArbitroArbitro Attività internazionale 1973-1981 UEFA e FIFA Arbitro Premi Anno Premio 1974 Premio Giovanni Mauro Alberto Michelotti Michelotti nel 1975 Nazionalità  Italia Calcio Ruolo Portiere Termine carriera 1955 Carriera Giovanili 1945-1946 Giovane Italia[1][2]1946-1947 ParmaRagazzi Squadre ...

 

Не следует путать с сиреновыми — семейством земноводных. У этого термина существуют и другие значения, см. Сирены (значения). У этого термина существуют и другие значения, см. Sirenia (значения). Сирены 1-й ряд: американский ламантин, африканский ламантин;2-й ряд: амазонский л...

 

Personal computer by Apple Not to be confused with Macintosh II. This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Macintosh Classic II – news · newspapers · books · scholar · JSTOR (May 2023) (Learn how and when to remove this message) Macintosh Classic II / Performa 200DeveloperApple Computer, Inc.Product familyCompact MacintoshRelease dateOctober ...

La Loma Osnovni podaci Država  Meksiko Savezna država Jalisco Opština Lagos de Moreno Stanovništvo Stanovništvo (2014.) 55[1] Geografija Koordinate 21°13′32″N 101°48′25″W / 21.22556°N 101.80694°W / 21.22556; -101.80694 Vremenska zona UTC-6, leti UTC-5 Nadmorska visina 1953[1] m La LomaLa Loma na karti Meksika La Loma je naselje u Meksiku, u saveznoj državi Jalisco, u opštini Lagos de Moreno. Prema proceni iz 2014. godine u nasel...

 

Moshe TeitelbaumDate personaleNăscut1 noiembrie 1914 Újfehértó, Szabolcs-Szatmár-Bereg, Ungaria[1] Decedat24 aprilie 2006 (91 de ani) New York City, New York, SUA ÎnmormântatMonroe[*][[Monroe (town in New York, United States)|​]] PărințiChaim Tzvi Teitelbaum Frați și suroriYekusiel Yehuda Teitelbaum (II) CopiiAaron TeitelbaumZalman TeitelbaumQ20608358[*]​ Cetățenie Ungaria România Statele Unite ale Americii Religieiudaism Ocupațierabin Limbi v...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!