Cofinality

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set A can alternatively be defined as the least ordinal x such that there is a function from x to A with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent.

Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net.

Examples

  • The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subset).
    • In particular, the cofinality of any nonzero finite ordinal, or indeed any finite directed set, is 1, since such sets have a greatest element.
  • Every cofinal subset of a partially ordered set must contain all maximal elements of that set. Thus the cofinality of a finite partially ordered set is equal to the number of its maximal elements.
    • In particular, let be a set of size and consider the set of subsets of containing no more than elements. This is partially ordered under inclusion and the subsets with elements are maximal. Thus the cofinality of this poset is choose
  • A subset of the natural numbers is cofinal in if and only if it is infinite, and therefore the cofinality of is Thus is a regular cardinal.
  • The cofinality of the real numbers with their usual ordering is since is cofinal in The usual ordering of is not order isomorphic to the cardinality of the real numbers, which has cofinality strictly greater than This demonstrates that the cofinality depends on the order; different orders on the same set may have different cofinality.

Properties

If admits a totally ordered cofinal subset, then we can find a subset that is well-ordered and cofinal in Any subset of is also well-ordered. Two cofinal subsets of with minimal cardinality (that is, their cardinality is the cofinality of ) need not be order isomorphic (for example if then both and viewed as subsets of have the countable cardinality of the cofinality of but are not order isomorphic). But cofinal subsets of with minimal order type will be order isomorphic.

Cofinality of ordinals and other well-ordered sets

The cofinality of an ordinal is the smallest ordinal that is the order type of a cofinal subset of The cofinality of a set of ordinals or any other well-ordered set is the cofinality of the order type of that set.

Thus for a limit ordinal there exists a -indexed strictly increasing sequence with limit For example, the cofinality of is because the sequence (where ranges over the natural numbers) tends to but, more generally, any countable limit ordinal has cofinality An uncountable limit ordinal may have either cofinality as does or an uncountable cofinality.

The cofinality of 0 is 0. The cofinality of any successor ordinal is 1. The cofinality of any nonzero limit ordinal is an infinite regular cardinal.

Regular and singular ordinals

A regular ordinal is an ordinal that is equal to its cofinality. A singular ordinal is any ordinal that is not regular.

Every regular ordinal is the initial ordinal of a cardinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial but need not be regular. Assuming the axiom of choice, is regular for each In this case, the ordinals and are regular, whereas and are initial ordinals that are not regular.

The cofinality of any ordinal is a regular ordinal, that is, the cofinality of the cofinality of is the same as the cofinality of So the cofinality operation is idempotent.

Cofinality of cardinals

If is an infinite cardinal number, then is the least cardinal such that there is an unbounded function from to is also the cardinality of the smallest set of strictly smaller cardinals whose sum is more precisely

That the set above is nonempty comes from the fact that that is, the disjoint union of singleton sets. This implies immediately that The cofinality of any totally ordered set is regular, so

Using König's theorem, one can prove and for any infinite cardinal

The last inequality implies that the cofinality of the cardinality of the continuum must be uncountable. On the other hand, the ordinal number ω being the first infinite ordinal, so that the cofinality of is card(ω) = (In particular, is singular.) Therefore,

(Compare to the continuum hypothesis, which states )

Generalizing this argument, one can prove that for a limit ordinal

On the other hand, if the axiom of choice holds, then for a successor or zero ordinal

See also

  • Club set – Set theory concept
  • Initial ordinal – mathematical concept

References

  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.

Read other articles:

غانديناغار (بالكجراتية: ગાંધીનગર)‏(بالإنجليزية: Gandhinagar)‏    سميت باسم مهاتما غاندي  تقسيم إداري البلد الهند  [1][2] عاصمة لـ كجراتمنطقة غاندي نغر  [لغات أخرى]‏  التقسيم الأعلى منطقة غاندي نغر  [لغات أخرى]‏  خصائص جغرافية إحداثيات 23°13...

 

Aeropus IIStater perak Aeropos IIBerkuasa399–395 BCPendahuluCrateuasPenerusArchelaus IIAyahPerdiccas IIIbutidak diketahuiAnak{{{children}}}AgamaAgama Yunani kuno Aeropus II dari Makedonia (Yunani: Ἀέροπος Βʹ ὁ Μακεδών), raja Makedonia, putra dari Perdikas II adalah penjaga keponakannya Orestes, putra dari saudara Aeropus Archelaus I, yang memerintah hampir lima tahun dari 399 SM. Empat tahun pertama pada masa itu, ia memerintah bersama dengan Orestes, dan sisanya sendiri....

 

Olympic figure skating events in St. Moritz 1948 Figure skating at the V Winter OlympicsType:Olympic GamesChampionsMen's singles: Dick ButtonLadies' singles: Barbara Ann ScottPairs: Micheline Lannoy / Pierre BaugnietNavigationPrevious: 1936 Winter OlympicsNext: 1952 Winter Olympics Figure skating at the 1948 Winter Olympics took place at the Olympic Ice Rink in St. Moritz, Switzerland. Three figure skating events were contested: men's singles, ladies' singles, and pair skating.[1] Eve...

ハンス・ヤーコプ・クリストッフェル・フォン・グリンメルスハウゼン グリンメルスハウゼンの肖像画(1641年)誕生 1621年 - 1622年頃 神聖ローマ帝国・ゲルンハウゼン死没 1676年8月17日 神聖ローマ帝国・レンヒェン(ドイツ語版)職業 小説家国籍 ドイツ代表作 『阿呆物語』テンプレートを表示 ポータル 文学 『阿呆物語』表紙 ハンス・ヤーコプ・クリストッフェル

 

Diecezja VinhGiáo phận Vinh Państwo  Wietnam Siedziba VinhTòa Giám mục, Xã Đoài, Nghi Diên, Nghi Lộc, Nghệ An, Việt Nam Data powołania 27 marca 1846 Wyznanie katolickie Kościół rzymskokatolicki Metropolia Hanoi Katedra Wniebowzięcia NMP Biskup diecezjalny Alphonse Nguyễn Hữu Long PSS Biskup pomocniczy Pierre Nguyễn Văn Viên Dane statystyczne (2018) Liczba wiernych• odsetek wiernych 281 9349,2% Liczba kapłanów• w tym ...

 

Slovene diaspora in the world (includes people with Slovenian ancestry or citizenship).   Slovenia   + 100,000   + 10,000   + 1,000 The Slovene diaspora include autochthonous Slovene minority in Italy, estimated at 83,000 – 100,000,[1] Slovene minority in southern Austria at 24,855, in Croatia at 13,200, and Slovene minority in Hungary at 3,180[2] and a significant Slovene expatriate communities live in the United States (most notably ...

For other uses, see Beseda (disambiguation). Vyazemskiy-Dolgorukiy estate (Znamenskiy lane) 3 Beseda (Russian: Беседа, IPA: [bʲɪˈsʲedə] ⓘ, lit. 'debate') was a clandestine discussion circle consisting of liberal zemstvo men, among them prominent and grand names of the Russian aristocracy.[1] The intelligentsia discussion group was formed in the wake of resumed persecution of the zemstvos after increased liberties during the Russian famine of 1891–92. Beseda ...

 

Опис Емблема ФК Миргород. Емблема ФК «Миргород» (Миргород) Джерело fcvorskla.com.ua Час створення невідомо Автор зображення невідомо Ліцензія Це логотип (емблема) організації, товару, або заходу, що перебуває під захистом авторських прав та/або є товарним знаком. Використання зо...

 

Vodafone Mobile Operations Ltd.Trade nameKKTC TelsimTypePublicIndustryMobile telecommunicationsFoundedAugust 1995HeadquartersNorth Nicosia, Northern CyprusProductsMobile phone services, mobile phone related goodsParentVodafone TurkeyWebsitekktctelsim.com Vodafone Mobile Operations Ltd. or legally KKTC Telsim is the first GSM operator in Northern Cyprus. It was granted a licence in August 1995, and started service accepting subscribers on 23 October 1995.[1] The company was a subsidiar...

You can help expand this article with text translated from the corresponding article in German. (September 2022) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wiki...

 

This is a List of National Historic Landmarks in Arizona. There are 47 National Historic Landmarks (NHLs) in Arizona, counting Hoover Dam that spans from Nevada and is listed in Nevada by the National Park Service (NPS), and Yuma Crossing and Associated Sites, which is listed by the NPS in Arizona, and overlaps into California. The first designated was San Xavier del Bac Mission, in October, 1960. The most recently designated is the Klagetoh (Leegito) Chapter House in January 2021. Map all co...

 

Species of bird Black shama Conservation status Endangered (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Aves Order: Passeriformes Family: Muscicapidae Genus: Copsychus Species: C. cebuensis Binomial name Copsychus cebuensis(Steere, 1890) Synonyms Kittacincla cebuensis The Black shama (Copsychus cebuensis) is a species of bird in the family Muscicapidae. It is endemic to the island of Cebu, Philippines where it is known l...

2006 video game For the novel, see Murder on the Orient Express. 2006 video gameAgatha Christie: Murder on the Orient ExpressDeveloper(s)AWE ProductionsPublisher(s)The Adventure CompanyDesigner(s)Lee SheldonSeriesAgatha ChristiePlatform(s)Microsoft WindowsReleaseNA: November 14, 2006EU: March 9, 2007Genre(s)AdventureMode(s)Single-player Agatha Christie: Murder on the Orient Express is a 2006 adventure game developed by AWE Productions and published by The Adventure Company for Microsoft Windo...

 

Ghanaian businessman This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (August 2023) (Learn how and when to remove this template message) Ibrahim MahamaMahama in 2014Born (1971-01-29) 29 January 1971 (age 52)Tamale, Northern Region of Ghana, GhanaEducationTamale Senior High SchoolAlma materCollege of Nort...

 

La Temporada 2021 del fútbol boliviano comprende todas las actividades supeditadas por la Federación Boliviana de Fútbol en lo que refiere a las competiciones en las categorías profesional y aficionado, tanto de carácter nacional e internacional, disputadas por clubes bolivianos, y también por las selecciones nacionales de este país, en sus diversas categorías llevadas a cabo durante todo el año 2021, desde el 1 de enero hasta el 31 de diciembre. Campeonatos de Equipos Masculino Torn...

Italian sprinter Eleonora MarchiandoEleonora Marchiando on the 4×400 m relay Istanbul 2023 podiumPersonal informationNationalityItalianBorn (1997-09-27) 27 September 1997 (age 26)Aosta, Italy[1]SportSportAthleticsEvent(s)400 m400 m hsClubAtletica Sandro Calvesi C.S. CarabinieriCoached byEddy Ottoz[1]Achievements and titlesPersonal best 400 m hs: 55.16 (2021) Medal record Women's athletics Representing  Italy European Indoor Championships 2023 Istanbul 4×400 m relay...

 

تشارلز ملفين برايس (بالإنجليزية: Charles Melvin Price)‏    معلومات شخصية الميلاد 1 يناير 1905  سانت لويس الشرقية  [لغات أخرى]‏  الوفاة 22 أبريل 1988 (83 سنة)   كامب سبرينغز  سبب الوفاة سرطان البنكرياس  مواطنة الولايات المتحدة  مناصب عضو[2]   في المنصب1929  – ...

 

В Википедии есть статьи о других людях с такой фамилией, см. Табачник. Ян Петрович (Яков Пиневич) Табачникукр. Ян Петрович (Я́ків Пі́невич) Табачник Народный депутат Украины V , VI , VII созывов Рождение 31 июля 1945(1945-07-31)Черновцы, Украинская ССР, СССР Смерть 11 сентября 2023(2023-09-11) (78...

Koordinat: 31°46′31.73″N 35°13′59.16″E / 31.7754806°N 35.2331000°E / 31.7754806; 35.2331000 The Temple InstituteDidirikan1987LokasiYerusalem, IsraelSitus webtempleinstitute.org/ The Temple Institute adalah museum, lembaga penelitian dan pusat pendidikan di Yerusalem. Didirikan pada 1987 oleh Rabbi Yisrael Ariel. Lembaga ini didedikasikan untuk dua Temples di Yerusalem (disebut Pertama dan Kedua Kuil). Rabbi Ariel juga berencana untuk membangun kembali Bait ...

 

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Wiltz (Begriffsklärung) aufgeführt. Wiltz Wappen Karte Basisdaten Staat: Luxemburg Luxemburg Koordinaten: 49° 58′ N, 5° 56′ O49.9641666666675.9358333333333Koordinaten: 49° 57′ 51″ N, 5° 56′ 9″ O Kanton: Wiltz Einwohner: 7949 (1. Januar 2023)[1] Fläche: 39,3 km² Bevölkerungsdichte: 202,5 Einw./km² Gemeindenummer: 0807 Website: www.w...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!