Order type

In mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements).

In the special case when X is totally ordered, monotonicity of f already implies monotonicity of its inverse.

One and the same set may be equipped with different orders. Since order-equivalence is an equivalence relation, it partitions the class of all ordered sets into equivalence classes.

Notation

If a set has order type denoted , the order type of the reversed order, the dual of , is denoted .

The order type of a well-ordered set X is sometimes expressed as ord(X).[1]

Examples

The order type of the integers and rationals is usually denoted and , respectively. The set of integers and the set of even integers have the same order type, because the mapping is a bijection that preserves the order. But the set of integers and the set of rational numbers (with the standard ordering) do not have the same order type, because even though the sets are of the same size (they are both countably infinite), there is no order-preserving bijective mapping between them. The open interval (0, 1) of rationals is order isomorphic to the rationals, since, for example, is a strictly increasing bijection from the former to the latter. Relevant theorems of this sort are expanded upon below.

More examples can be given now: The set of positive integers (which has a least element), and that of negative integers (which has a greatest element). The natural numbers have order type denoted by ω, as explained below.

The rationals contained in the half-closed intervals [0,1) and (0,1], and the closed interval [0,1], are three additional order type examples.

Order type of well-orderings

Three well-orderings on the set of natural numbers with distinct order types (top to bottom): , , and .

Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.

Examples

Firstly, the order type of the set of natural numbers is ω. Any other model of Peano arithmetic, that is any non-standard model, starts with a segment isomorphic to ω but then adds extra numbers. For example, any countable such model has order type ω + (ω* + ω) ⋅ η.

Secondly, consider the set V of even ordinals less than ω ⋅ 2 + 7:

As this comprises two separate counting sequences followed by four elements at the end, the order type is

Rational numbers

With respect to their standard ordering as numbers, the set of rationals is not well-ordered. Neither is the completed set of reals, for that matter.

Any countable totally ordered set can be mapped injectively into the rational numbers in an order-preserving way. When the order is moreover dense and has no highest nor lowest element, there even exist a bijective such mapping.

See also

  • Weisstein, Eric W. "Order Type". MathWorld.

References

  1. ^ "Ordinal Numbers and Their Arithmetic". Archived from the original on 2009-10-27. Retrieved 2007-06-13.

Read other articles:

Multi-purpose stadium in Belarus Dinamo National Olympic StadiumUEFA LocationMinsk, BelarusCoordinates53°53′42.67″N 27°33′36.20″E / 53.8951861°N 27.5600556°E / 53.8951861; 27.5600556Capacity22,246SurfaceGrassConstructionOpened1934Renovated1939, 1947–1954, 1978-1980, 2012–2017TenantsFC Dinamo Minsk (1934–2008, 2018–)FC Minsk (2009–2012)Belarus national football team (1992–2012, 2018–present) A birds eye view of the Stadium from June 2018. Dinam...

 

1976 film For other films with this title, see Hand of Death (1949 film) and Hand of Death (1962 film). Hand of DeathTheatrical posterDirected byJohn WooWritten byJohn WooProduced byRaymond ChowPeng ChienStarringDoran TanJames TienJackie ChanSammo HungCinematographyLiang Yung-chiEdited byChang Yau-chungYuan Tung-chunMusic byJoseph KooDistributed byGolden HarvestRelease date 15 July 1976 (1976-07-15) Running time95 minutesCountryHong KongLanguageMandarinBox officeHK$797,921.20&#...

 

Parte da série sobrePolítica de Timor-Leste Constituição Executivo Presidente - Francisco Guterres Primeiro-ministro - Taur Matan Ruak Legislativo Parlamento Nacional Judiciário Suprema Corte de Justiça Eleições Eleições presidenciais - 2012 · 2017 Eleições parlamentares - 2017 · 2018 Partidos políticos Subdivisões regionais Municípios Postos administrativos Sucos Tópicos relacionados Missões diplomáticas Portal de Timor-Lestevde Aileu 11 Remexio ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2023) خدمة إذاعة فلسطين الاستوديو الإذاعي التابع لخدمة الإذاعة الفلسطينية تاريخ أول بث 1936  تاريخ آخر بث 1948  تعديل مصدري - تعديل   التقطت الصورة في استوديو خد...

 

Inherited neurodegenerative disorder Medical conditionHuntington's diseaseOther namesHuntington's choreaAn edited microscopic image of a medium spiny neuron (yellow) with an inclusion body (orange), which occurs as part of the disease process (image width 360 µm)SpecialtyNeurologySymptomsProblems with motor skills, including coordination and gait, mood, and mental abilities[1][2]ComplicationsPneumonia, heart disease, physical injury from falls, suicide[3]Usual on...

 

كاهن يسكب الماء على رأس طفل رضيع في كنيسة رومانية كاثوليكية. معمودية الأطفال هو مصطلح يعني ممارسة تعميد الأطفال الرضع أو الأطفال الصغار.[1][2] في المناقشات اللاهوتية، اختلفت وجهات نظر المسيحيين حول المعمودية وكان الجدال حول قضيتين: نوع المعمودية ومعمودية الأطفال أو...

У Вікіпедії є статті про інші значення цього терміна: Динамо. «Динамо» (Одеса) Повна назва Футбольний клуб«Динамо» Коротка назва «Динамо»(Одеса) Засновано 1923 Населений пункт Одеса,  Україна Стадіон Ліга Чемпіонат України з футболу: друга ліга Домашня Виїзна Футбольний...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2015) (Learn how and when to remove this template message) This article relies excessively on references to primary sources. Please improve this artic...

 

Crater on the Moon Feature on the moonCurtisLRO imageCoordinates14°34′N 56°46′E / 14.57°N 56.76°E / 14.57; 56.76Diameter2.9 kmDepthUnknownColongitude187° at sunriseEponymHeber D. Curtis Apollo 17 image Apollo 15 image Curtis is a very small lunar impact crater that lies in the western Mare Crisium, to the east of the crater Picard. It is a circular, cup-shaped formation that is otherwise undistinguished. It was named after American astronomer Heber D. Curtis i...

Лилия даурская Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:МонокотыПорядок:ЛилиецветныеСемейство:ЛилейныеПодсемейство:ЛилейныеТриба:ЛилейныеРод:ЛилияВид:Лилия даурская Международное научное название Lilium pensylvanicum Ker Gawl., 1805 Из...

 

New Zealand painter Dolla RichmondPortrait (cropped) of Richmond by Harry Linley RichardsonBorn12 September 1861Parnell, AucklandDied16 April 1935Wellington, New ZealandNationalityNew ZealandKnown forpainting Dorothy Kate Richmond (12 September 1861 – 16 April 1935), known as Dolla Richmond, was a New Zealand painter noted for her watercolour paintings of natural plants and animals and panoramic landscapes. Early life The daughter of James Crowe Richmond and Mary Smith, Dorothy Richmon...

 

Constituency in Hungary (2012-) Budapest10th constituency(District III.)Constituencyfor the National AssemblyBoundary of 10th constituency in BudapestCityBudapestElectorate73,216 (2018)Major settlements3rd DistrictCurrent constituencyCreated2011PartyMSZP-DialogueMemberTímea Szabó[1]Created fromConstituency no. 3Constituency no. 4Elected2018 The 10th constituency of Budapest (Hungarian: Budapesti 10. számú országgyűlési egyéni választókerület) is one of the single member con...

2013 Colombian filmRoaOriginal poster for RoaDirected byAndrés BaizWritten byAndrés BaizPatricia CastañedaStarringMauricio PuentesCatalina Sandino MorenoCinematographyGuillermo NietoEdited byAlejandro Carrillo PenoviMusic byIván WyszogrodRelease date2013Running time98 minutesCountryColombiaLanguageSpanish Roa is a Colombian feature film released in 2013 directed by Andrés Baiz. It is a fictionalized account inspired by the final days in the life of Juan Roa Sierra, the man who was blamed...

 

Community in Tennessee, United StatesCordova, TennesseeCommunityCordova Farms Flowers Fellowship signCoordinates: 35°09′20″N 89°46′34″W / 35.15556°N 89.77611°W / 35.15556; -89.77611CountryUnited StatesStateTennesseeCountyShelbyCityMemphis (majority)Settledc. 1835Area • Total8.019 sq mi (20.77 km2)Elevation361 ft (110 m)Population (2020) • Total68,779 Census Bureau American Community SurveyTime zoneU...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sharda singer – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) ShardaBirth nameSharada IyengarAlso known asShardha, SharadaBorn(1933-10-25)25 October 1933Madras Presidency, British IndiaDied14 J...

Untuk orang lain dengan nama yang sama, lihat Richard Wolff. Richard D. WolffWolff di The Laura Flanders Show, Juli 2015LahirRichard David Wolff01 April 1942 (umur 81)[1]Youngstown, Ohio, AS[1]Suami/istriHarriet Fraad[2]InstitusiYale University (1967–69)City College of New York (1969–73)University of Massachusetts Amherst (1973–present)The New School (2008–present)[1]BidangEkonomi MarxianEkonomi politikHubungan internasionalMazhabEkonomi MarxianAlm...

 

Seorang pria di Stuttgart difoto tahun 2005. Laki-laki atau lelaki adalah istilah untuk jenis kelamin manusia yang setara dengan jantan bagi hewan. Laki-laki memiliki organ-organ reproduksi seperti testis dan penis, serta mampu menghasilkan sel gamet yang disebut sel sperma. Ciri kelamin sekunder yang khas pada manusia seperti munculnya jakun dan rambut wajah (seperti kumis dan janggut).[1] Istilah laki-laki umumnya digunakan untuk manusia segala umur. Sebutan umum untuk orang dewasa ...

 

Association football league This article is about the second tier of Polish football. For the current first tier league previously known as I liga, see Ekstraklasa. For articles with similar names, see 1. Liga (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: I liga – news · newspapers · books · sc...

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this ...

 

2000 Men's Olympic Football TournamentTournament detailsHost countryAustraliaDates13–30 SeptemberTeams16 (from 6 confederations)Venue(s)6 (in 5 host cities)Final positionsChampions Cameroon (1st title)Runners-up SpainThird place ChileFourth place United StatesTournament statisticsMatches played32Goals scored103 (3.22 per match)Attendance1,034,500 (32,328 per match)Top scorer(s) Iván Zamorano(6 goals)← 1996 2004 → International footba...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!