Трикутники в евклідовій геометрії називають подібними, якщо вони є подібними фігурами. Тобто, їх кути відповідно рівні, а відповідні сторони є пропорційними.
Встановити подібність трикутників можна за допомогою однієї з трьох ознак:
1) Перша ознака подібності трикутників (за двома кутами)
Якщо два кути одного трикутника відповідно дорівнюють двом кутам другого трикутника, то такі трикутники є подібними.
2) Друга ознака подібності трикутників (за двома сторонами і кутом між ними)
Якщо дві сторони одного трикутника пропорційні двом сторонам другого трикутника і кути, утворені цими сторонами, рівні, то такі трикутники є подібними.
3) Третя ознака подібності трикутників (за трьома сторонами)
Якщо три сторони одного трикутника пропорційні трьом сторонам другого трикутника, то такі трикутники є подібними.
Мерзляк А. Г., Полонський В. Б., Якір М. С. Геометрія: підруч. для 8 кл. з поглибл. вивченням математики. — Х.: Гімназія, 2009. — 240 с. ISBN 978-966-474-012-5