Існують два види запису діедричних груп пов'язаних із многокутником з n сторонами. У геометрії група записується Dn, тоді як алгебрі та сама група позначається D2n з метою вказання кількості елементів.
У цій статті, Dn (і іноді Dihn) посилається на симетрії правильного многокутника з n сторонами.
Визначення
Елементи
Правильний многокутник з n сторонами має 2n різних симетрій: n обертальних симетрій і n осьових симетрій. Пов'язані обертання і відбиття утворюють діедричну групу Dn. Якщо n непарне, тоді кожна вісь симетрії поєднує середину сторони і протилежну вершину. Якщо n парне, тоді існує n/2 осей симетрій, які поєднують протилежні вершини. Так чи інакше, існує n осей симетрії і 2n елементів у групі симетрій. Відбиття відносно однієї з осей симетрії із подальшим відбиттям відносно іншої осі рівноцінно обертанню на подвоєний кут між осями. На малюнку показано 16 елементів групи D8 для знака «STOP»:
Перший рядок показує результат восьми обертань, другий — восьми відбиттів.
Структура групи
Як і з багатьма геометричними об'єктами, композиція двох симетрій правильного многокутника є симетрією. Ця операція надає симетріям алгебраїчну структуру скінченної групи.
Наступна таблиця Келі показує наслідки поєднань в групі D3 (симетрій правильного трикутника). R0 позначає тотжність; R1 і R2 позначають обертання на 120 і 240 градусів проти (руху) годинникової стрілки; і S0, S1, і S2 позначають відбиття через три лінії показані на малюнку праворуч.
R0
R1
R2
S0
S1
S2
R0
R0
R1
R2
S0
S1
S2
R1
R1
R2
R0
S1
S2
S0
R2
R2
R0
R1
S2
S0
S1
S0
S0
S2
S1
R0
R2
R1
S1
S1
S0
S2
R1
R0
R2
S2
S2
S1
S0
R2
R1
R0
Наприклад, S2S1 = R1 бо відбиття S1 із наступним відбиттям S2 утворюють обертання на 120 градусів. (Це звичайний зворотний порядок композиції.) Композиція операцій не комутативна.
Загалом, група Dn має елементи R0,...,Rn−1 і S0,...,Sn−1, з композиціями заданими такими формулами:
В усіх випадках, додавання і віднімання індексів повинно виконуватись із використанням модульної арифметики з модулем n.
Наприклад, елементи групи D4 можуть бути представлені такими вісьмома матрицями:
Загалом, матрицями для елементів з Dn мають такий вигляд:
Rk — матриця повороту, яка уособлює обертання проти годинникової стрілки на кут 2πk ⁄ n. Sk — відбиття через лінію утворену кутом πk ⁄ n з віссю x.
Малі діедричні групи
Для n = 1 ми маємо Dih1. Такий запис рідко використовується, хіба для рядів, по це дорівнює Z2. Для n = 2 маємо Dih2, 4-група Клейна. Це два винятки з усієї серії:
Вони абелеві; для всіх інших значень n група Dihnне абелева.
Циклічні графи діедричних груп містять n-елементний цикл і n 2-елементних циклів. Темна вершина в циклічних графах різних діедричних груп знизу вказує на тотожний елемент, а інші вершини це інші елементи групи. Цикл містить послідовні ступені елементів зв'язаних з нейтральним елементом.