การหลอมนิวเคลียส

เส้นโค้งพลังงานยึดเหนี่ยวนิวเคลียส, นิวคลีออน (หมายถึงองค์ประกอบของนิวเคลียส หมายถึงโปรตอนหรือนิวตรอน) ที่มีมวลสูงถึง Iron-56 โดยทั่วไปจะปลดปล่อยพลังงานออกมา ส่วนพวกที่หนักกว่านั้นโดยทั่วไปจะดูดซับพลังงาน
ดวงอาทิตย์จะผลิตพลังงานออกมาโดยการหลอมนิวเคลียสของไฮโดรเจนจนกลายเป็นฮีเลียม ในแกนกลางของมัน ดวงอาทิตย์จะหลอมไฮโดรเจน 620 ล้านเมตริกตันทุกวินาที

การหลอมนิวเคลียส (อังกฤษ: nuclear fusion) ในทางฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน

การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า "การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่​​ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา

หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลองการแปรนิวเคลียสโดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike)

การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้

กระบวนการ

การหลอมของดิวเทอเรียมกับทริเทียมทำให้เกิดฮีเลียม-4 และปลดปล่อยนิวตรอนหนึ่งตัวเป็นอิสระ พร้อมทั้งพลังงาน 17.59 MeV เมื่อปริมาณที่เหมาะสมของมวลมีการเปลี่ยนแปลงรูปแบบไปเป็นพลังงานจลน์ของผลผลิต เป็นไปตาม kinetic E = Δmc2, เมื่อ Δm เป็นการเปลี่ยนแปลงในมวลนิ่งของอนุภาคเหล่านั้น[1]

ต้นกำเนิดของพลังงานที่ปล่อยออกมาในการหลอมรวม (อังกฤษ: fusion) ขององค์ประกอบเบาจะเกิดจากการมีปฏิสัมพันธ์ของสองแรงที่ตรงข้ามกัน แรงหนึ่งคือแรงนิวเคลียสซึ่งรวมแรงจากโปรตอนและนิวตรอนเข้าด้วยกัน อีกแรงหนึ่งคือแรงคูลอมบ์ซึ่งเป็นสาเหตุให้โปรตอนทั้งหลายผลักกันเอง โปรตอนจะมีประจุบวกและผลักกันเอง แต่พวกมันก็ยังคงอยู่ติดกัน แสดงให้เห็นถึงการดำรงอยู่ของอีกแรงหนึ่งที่เรียกว่าแรงดึงดูดของนิวเคลียส แรงนี้ถูกเรียกว่าแรงนิวเคลียร์ที่แข็งแกร่ง มันเอาชนะแรงผลักไฟฟ้าในระยะที่ใกล้กันมาก ผลของแรงนี้จะไม่สังเกตได้นอกนิวเคลียส นั่นคือความแรงจะขึ้นอยู่กับระยะทาง ทำให้มันเป็นแรงวิสัยใกล้ แรงเดียวกันยังดึงนิวคลีออน (นิวตรอนและโปรตอน) ให้อยู่ด้วยกัน[2] เนื่องจากว่าแรงนิวเคลียสจะแข็งแกร่งกว่าแรงคูลอมบ์สำหรับนิวเคลียสของอะตอมที่มีขนาดเล็กกว่าธาตุเหล็กและนิกเกิล การสร้างนิวเคลียสเหล่านี้ขึ้นจากนิวเคลียสที่เบากว่าโดยการหลอม จะปลดปล่อยพลังงานมากขึ้นจากแรงดึงดูดสุทธิของอนุภาคเหล่านี้ อย่างไรก็ตาม สำหรับนิวเคลียสที่มีขนาดใหญ่กว่า จะไม่มีพลังงานถูกปล่อยออกมา เนื่องจากแรงนิวเคลียสเป็นแรงพิสัยใกล้และไม่สามารถกระทำต่อเนื่องกับนิวเคลียสขนาดใหญ่ที่อยู่นิ่ง ๆ ได้ ดังนั้นพลังงานจะไม่ถูกปล่อยออกมาอีกต่อไปเมื่อนิวเคลียสดังกล่าวถูกทำขึ้นโดยการหลอม แต่พลังงานจะถูกดูดซึมในกระบวนการดังกล่าวแทน

ปฏิกิริยาการหลอมธาตุเบาเป็นผู้ให้พลังงานกับดวงดาวและเป็นผู้ผลิตแทบทุกธาตุในกระบวนการที่เรียกว่าการสังเคราะห์นิวเคลียส การหลอมของธาตุที่เบากว่าในดวงดาวจะปลดปล่อยพลังงานออกมา(และมวลที่มักจะออกมาพร้อมกับมัน) ยกตัวอย่างเช่นในการหลอมของสองนิวเคลียสไฮโดรเจนให้เป็นฮีเลียม 0.7% ของมวลจะหลุดออกไปจากระบบในรูปแบบของพลังงานจลน์หรือรูปแบบอื่น ๆ ของพลังงาน (เช่นรังสีแม่เหล็กไฟฟ้า)[3]

ในการวิจัยเพื่อการควบคุมการหลอม โดยมีวัตถุประสงค์เพื่อผลิตพลังงานการหลอมสำหรับการผลิตไฟฟ้า มีการดำเนินการมานานกว่า 60 ปี มันพบกับความยุ่งยากทางวิทยาศาสตร์และเทคโนโลยีอย่างมาก แต่ก็มีผลคืบหน้า ในปัจจุบันปฏิกิริยาการหลอมที่ควบคุมได้ไม่สามารถที่จะผลิตปฏิกิริยาการหลอม (ด้วยตนเองอย่างยั่งยืน) ที่คุ้มค่าการลงทุนได้[4] การออกแบบที่ใช้การได้สำหรับเครื่องปฏิกรณ์ที่ในทางทฤษฎีแล้วจะส่งพลังงานการหลอมเป็นสิบเท่าของจำนวนพลังงานที่จำเป็นเพื่อสร้างความร้อนให้กับพลาสม่าจนถึงอุณหภูมิที่ต้องการอยู่ในระหว่างการพัฒนา (ดู ITER) สิ่งอำนวยความสะดวกใน ITER คาดว่าจะเสร็จสิ้นขั้นตอนการก่อสร้างในปี 2019 มันก็จะเริ่มติดตั้งเครื่องปฏิกรณ์ในปีเดียวกันและเริ่มต้นการทดลองพลาสม่าในปี 2020 แต่ไม่คาดว่ามันจะเริ่มการหลอมดิวเทอเรียม-ไอโซโทปเต็มรูปแบบจนกว่าจะถึงปี 2027[5]

มันต้องใช้พลังงานอย่างมากในการที่จะบังคับให้นิวเคลียสหลอมละลาย แม้แต่ธาตุที่มีน้ำหนักเบาที่สุดเช่นไฮโดรเจน เป็นเพราะว่านิวเคลียสทุกตัวมีประจุบวกอันเนื่องมาจากโปรตอนในตัวมัน และเป็นอย่างเช่นกกแรงผลักของประจุ นิวเคลียสจะต่อต้านอย่างแรงถ้าถูกวางอยู่ใกล้กัน เมื่อถูกเร่งให้มีความเร็วสูง พวกมันสามารถเอาชนะแรงผลักไฟฟ้าสถิตนี้และจะถูกบังคับให้อยู่ใกล้พอสำหรับแรงดึงดูดนิวเคลียร์จนมีความแข็งแรงพอที่จะบรรลุการหลอม การหลอมของนิวเคลียสที่เบากว่า ซึ่งจะสร้างนิวเคลียสที่หนักขึ้นและมักจะเป็นนิวตรอนอิสระหรือโปรตอน โดยทั่วไปจะปลดปล่อยพลังงานมากขึ้นกว่าที่มันได้รับเพื่อที่จะบังคับให้นิวเคลียสทั้งหลายอยู่ด้วยกัน นี้เป็นกระบวนการคายความร้อนแบบหนึ่งที่สามารถผลิตปฏิกิริยาด้วยตนเองอย่างยั่งยืน สถานีจุดระเบิดแห่งชาติของสหรัฐ ซึ่งใช้การหลอมในภาชนะปิดที่เฉื่อยแบบขับเคลื่อนด้วยเลเซอร์ (อังกฤษ: laser-driven inertial confinement fusion) ได้รับการคาดการณ์ว่าจะสามารถสร้างปฏิกิริยาการหลอมที่คุ้มทุนได้

การทดลองเป้าหมายเลเซอร์ขนาดใหญ่ได้ดำเนินการเป็นครั้งแรกในเดือนมิถุนายนปี 2009 และการทดลองการจุดระเบิดเริ่มต้นขึ้นในช่วงต้นปี 2011[6][7]

พลังงานที่ถูกปล่อยออกมาในปฏิกิริยานิวเคลียร์ส่วนใหญ่จะมีขนาดใหญ่กว่าในปฏิกิริยาเคมีอย่างมาก เพราะพลังงานยึดเหนี่ยวที่ยึดนิวเคลียสเอาไว้จะมีขนาดใหญ่กว่าพลังงานที่ยึดอิเล็กตรอนไว้กับนิวเคลียส ยกตัวอย่างเช่นพลังงานจากการแตกตัวเป็นไอออน (อังกฤษ: ionization energy) ที่ได้รับโดยการเพิ่มอิเล็กตรอนหนึ่งตัวกับนิวเคลียสไฮโดรเจนหนึ่งตัวเป็น 13.6 eV -น้อยกว่าหนึ่งในล้านของ 17.6 MeV ที่ถูกปล่อยออกมาในปฏิกิริยาดิวเทอเรียม-ไอโซโทป (D-T) ที่ได้แสดงในแผนภาพทางขวา (หนึ่งกรัมของสารจะปล่อย 339 GJ ของพลังงาน) ปฏิกิริยาการหลอมมีความหนาแน่นของพลังงานมากกว่าปฏิกิริยานิวเคลียร์ฟิชชันหลายเท่า ปฏิกิริยาการหลอมจะผลิตพลังงานต่อหน่วยของมวลมากกว่าอย่างมากแม้ว่าปฏิกิริยาฟิชชันแต่ละครั้งโดยทั่วไปจะมีพลังมากกว่าปฏิกิริยาการหลอมแต่ละครั้ง และปฏิกิริยาทั้งสองแบบยังมีพลังมากกว่าปฏิกิริยาทางเคมีหลายล้านเท่า มีแต่การแปลงโดยตรงของมวลไปเป็นพลังงานเท่านั้นที่มีพลังต่อหน่วยของมวลมากกว่าการหลอมนิวเคลียส เช่นที่เกิดจากการชนกันแบบทำลายล้างของสสารและปฏิสสาร

การหลอมนิวเคลียสในดวงดาว

ห่วงโซ่โปรตอน-โปรตอนเป็นปฏิกิริยาหลักในดวงดาวที่มีขนาดเท่าดวงอาทิตย์หรือเล็กกว่า
วัฏจักร CNO เป็นปฏิกิริยาหลักในดวงดาวที่หนักกว่าดวงอาทิตย์

กระบวนการหลอมที่สำคัญที่สุดในธรรมชาติเป็นสิ่งที่ให้พลังงานกับดวงดาว ในศตวรรษที่ 20 มีการตระหนักว่าพลังงานที่ปล่อยออกมาจากปฏิกิริยาการหลอมนิวเคลียสเป็นตัวกำหนดอายุขัยของดวงอาทิตย์และดาวอื่น ๆ โดยเป็นแหล่งที่มาของความร้อนและแสงสว่าง การหลอมของนิวเคลียสทั้งหลายในดาวดวงหนึ่งเริ่มต้นจากความอุดมสมบูรณ์ของไฮโดรเจนและฮีเลียมในช่วงแรก เกิดเป็นพลังงานและการสังเคราะห์นิวเคลียสขึ้นใหม่เป็นผลพลอยได้จากกระบวนการหลอมนั้น ผู้ผลิตพลังงานหลักในดวงอาทิตย์เป็นการหลอมของไฮโดรเจนก่อตัวเป็นก๊าซฮีเลียมซึ่งเกิดขึ้นที่อุณหภูมิแกนกลางของดวงอาทิตย์ที่ 14 ล้านเคลวิน ผลสุทธิคือการหลอมรวมของสี่โปรตอนกลายเป็นหนึ่งอนุภาคแอลฟาพร้อมกับการปลดปล่อยโพสิตรอนสองตัวและนิวตริโนสองตัว (ซึ่งเปลี่ยนสองโปรตอนไปเป็นนิวตรอน) และพลังงาน ห่วงโซ่ปฏิกิริยาที่แตกต่างกันเข้ามามีส่วนร่วม ขึ้นอยู่กับมวลของดาว สำหรับดาวขนาดดวงอาทิตย์หรือเล็กกว่าห่วงโซ่โปรตอน-โปรตอนจะเป็นปฏิกิริยาหลัก ในดาวที่หนักกว่า วัฏจักร CNO (อังกฤษ: Carbon Nitrogen Oxigen Cycle) มีความสำคัญมากกว่า

เมื่อดาวใช้ขึ้นส่วนที่สำคัญของไฮโดรเจนของมันหมดไปเรื่อย ๆ มันก็เริ่มที่จะสังเคราะห์ธาตุที่หนักกว่าโดยเป็นส่วนหนึ่งของการสังเคราะห์นิวเคลียสแบบดารา (อังกฤษ: stellar nucleosynthesis) อย่างไรก็ตามธาตุที่หนักที่สุดจะมีการสังเคราะห์โดยการหลอมที่เกิดขึ้นเมื่อดาวที่มีมวลขนาดใหญ่มากกว่าผ่านการซูเปอร์โนวาที่มีความรุนแรงในตอนท้ายของชีวิตของมัน กระบวนการนี้เรียกว่าการสังเคราะห์นิวเคลียสแบบซูเปอร์โนวา (อังกฤษ: supernova nucleosynthesis)

ข้อกำหนด

ดูเพิ่ม

แหล่งข้อมูลอื่น

อ้างอิง

  1. Shultis, J.K. and Faw, R.E. (2002). Fundamentals of nuclear science and engineering. CRC Press. p. 151. ISBN 0-8247-0834-2.{{cite book}}: CS1 maint: multiple names: authors list (ลิงก์)
  2. Physics Flexbook. Ck12.org. Retrieved on 2012-12-19.
  3. Bethe, Hans A. "The Hydrogen Bomb", Bulletin of the Atomic Scientists, April 1950, p. 99.
  4. "Progress in Fusion". ITER. สืบค้นเมื่อ 2010-02-15.
  5. "ITER – the way to new energy". ITER. 2014.
  6. "The National Ignition Facility: Ushering in a new age for high energy density science". National Ignition Facility. สืบค้นเมื่อ 2014-03-27.
  7. "DOE looks again at inertial fusion as potential clean-energy source", David Kramer, Physics Today, March 2011, p 26

Read other articles:

Margaret dari Brabant (1323–1380) merupakan putri kedua Adipati John III dari Brabant dan Mary dari Évreux. Ia merupakan putri tunggal Adipati John. Pada tahun 1347 ia menikahi Adipati Louis II dari Flandria dan menjadi ibu Margaret III, istri Pangeran Flandria (1350–1405). Melalui putrinya ini, Brabant berada di bawah pengaruh Burgundia, ketika ia menikahi Philip yang Pemberani. Referensi Genealogics: Margaretha of Brabant

 

علي الحوسني معلومات شخصية الاسم الكامل علي محمد علي الحوسني الميلاد 26 مايو 1988 (العمر 35 سنة)الإمارات العربية المتحدة الطول 1.78 م (5 قدم 10 بوصة) مركز اللعب حارس مرمى الجنسية الإمارات العربية المتحدة  معلومات النادي النادي الحالي عجمان الرقم 81 مسيرة الشباب سنوات فريق ن

 

Convento de Santa Clara Bien de Relevancia Local LocalizaciónPaís España EspañaComunidad Comunidad Valenciana Comunidad ValencianaLocalidad ValenciaCoordenadas 39°28′22″N 0°23′40″O / 39.472676, -0.394392Información religiosaCulto Iglesia católicaDiócesis ValenciaOrden Orden de Clarisas CapuchinasAdvocación Santa ClaraPatrono Clara de AsísHistoria del edificioConstrucción 1911Arquitecto Ramón Lucini CallejoDatos arquitectónicosTipo Mona...

Temen KondanganPoster filmSutradara Iip Sariful Hanan Produser Ferry Garink Ardiyan Tia Hendani Ditulis oleh Fauzan Indra Adisuko Rino Sarjono Skenario Fauzan Indra Adisuko Rino Sarjono Cerita Priesnanda Dwisatria Iip Sariful Hanan Pemeran Prisia Nasution Gading Marten Kevin Julio Reza Nangin Samuel Rizal Olivia Lubis Jensen Pierre Gruno Imelda Therinne Ovi Dian Sahira Anjani Yeslin Wang Iszur Muchtar Febby Febiola Diah Permatasari Chika Waode Oline Mendeng Deny Firdaus Ica Naga Melissa Karim...

 

Ця стаття є сирим перекладом з іншої мови. Можливо, вона створена за допомогою машинного перекладу або перекладачем, який недостатньо володіє обома мовами. Будь ласка, допоможіть поліпшити переклад. (березень 2020) Шаблон:Киберспортивный клуб Це незавершена стаття о киб...

 

Ця стаття про червоний надгігант. Про молоде масивне зоряне скупчення див. Westerlund 1. Westerlund 1-26 Фото великого розсіяного скупчення Westerlund 1 з виноскою, яка показує W1-26 з пов'язаною хмарою іонізованого водню (фото ESO) Дані спостереженняЕпоха J2000 Сузір’я Жертовник Пряме піднесе

Filter in electronics and signal processing Linear analogelectronic filters Network synthesis filters Butterworth filter Chebyshev filter Elliptic (Cauer) filter Bessel filter Gaussian filter Optimum L (Legendre) filter Linkwitz–Riley filter Image impedance filters Constant k filter m-derived filter General image filters Zobel network (constant R) filter Lattice filter (all-pass) Bridged T delay equaliser (all-pass) Composite image filter mm'-type filter Simple filters RC filter RL filter L...

 

1950 film by Jean Yarbrough Triple TroubleDirected byJean YarbroughWritten byCharles MarionBert LawrenceProduced byJan GrippoStarringLeo GorceyHuntz HallGabriel DellDavid GorceyWilliam BenedictCinematographyMarcel LePicardEdited byWilliam AustinMusic byEdward J. KayDistributed byMonogram PicturesRelease date August 13, 1950 (1950-08-13) Running time66 minutesCountryUnited StatesLanguageEnglish Triple Trouble is a 1950 comedy film directed by Jean Yarbrough and starring The Bowe...

 

De geschiedenis kent meerdere personen met de naam Maurits van Saksen Maurits van Saksen (1521-1553), hertog van Saksen Maurits van Saksen (1696-1750) of Maurice de Saxe, Frans generaal Bekijk alle artikelen waarvan de titel begint met Maurits van Saksen of met Maurits van Saksen in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Maurits van Saksen inzichtelijk te maken. Op deze pagina staat een uitleg van de verschillende...

American basketball player (born 1984) Raymond FeltonFelton with the New York Knicks in October 2010Personal informationBorn (1984-06-26) June 26, 1984 (age 39)Marion, South Carolina, U.S.Listed height6 ft 1 in (1.85 m)Listed weight210 lb (95 kg)Career informationHigh schoolLatta (Latta, South Carolina)CollegeNorth Carolina (2002–2005)NBA draft2005: 1st round, 5th overall pickSelected by the Charlotte BobcatsPlaying career2005–2019PositionPoint guard / shooti...

 

Region of Serbia Central SerbiaЦентрална Србија (Serbian)Centralna Srbija (Serbian)Map of Central Serbia within SerbiaLargest cityBelgradeArea• Total55,968 km2 (21,609 sq mi)Population• 2022 census4,906,773• Density87.6/km2 (226.9/sq mi)Time zoneUTC+1 (CET)• Summer (DST)UTC+2 (CEST) Central Serbia (Serbian: централна Србија, romanized: centralna Srbija), also referred to as Serbia proper (Se...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Outubro de 2020) Localização dos estados nordestinos e nortistas no mapa do Brasil. Diversas competições de futebol entre as regiões Norte e Nordeste do Brasil já foram realizadas. Alguns que tiveram poucas edições como o Torneio d...

2009 video game 2009 video gameFinal Fantasy XIIICover art, featuring the game's protagonist, LightningDeveloper(s)Square Enix 1st Production Department[a]Publisher(s)Square EnixDirector(s)Motomu ToriyamaProducer(s)Yoshinori KitaseProgrammer(s)Yoshiki KashitaniArtist(s)Isamu KamikokuryoTetsuya NomuraWriter(s) Daisuke WatanabeMotomu Toriyama Composer(s)Masashi HamauzuSeriesFinal FantasyFabula Nova CrystallisEngineCrystal ToolsPlatform(s)PlayStation 3Xbox 360WindowsReleasePlayStation 3J...

 

1956 film by Roger Corman GunslingerFilm poster by Reynold BrownDirected byRoger CormanWritten byCharles B. GriffithMark HannaProduced byRoger CormanStarringBeverly GarlandJohn IrelandAllison HayesCinematographyFrederick E. WestEdited byCharles GrossMusic byRonald SteinDistributed byAmerican Releasing Corporation[1]Release date October 1956 (1956-10)[1] Running time77 minutes[1]CountryUnited StatesLanguageEnglish Gunslinger is a 1956 American Western film dir...

 

American semiconductor company Marvell Technology, Inc.TypePublicTraded asNasdaq: MRVLNasdaq-100 componentISINUS5738741041IndustrySemiconductorsFounded1995; 28 years ago (1995)FoundersSehat SutardjaWeili DaiPantas SutardjaHeadquartersSanta Clara, California, U.S.Key peopleRichard S. Hill, (Chairman)Matthew Murphy (President and CEO)Jean X. Hu (CFO)ProductsSemiconductor deviceapplication-specific integrated circuitintegrated circuitcentral processing unitdata processing ...

English Army officer, politician and peer Charles Mordaunt, 3rd Earl of Peterborough Charles Mordaunt, 3rd Earl of Peterborough and 1st Earl of Monmouth, KG, PC (1658 – 25 October 1735) was an English Army officer, Whig politician and peer. He was the son of John Mordaunt, 1st Viscount Mordaunt, and his wife Elizabeth, the daughter and sole heiress of Thomas Carey, the second son of Robert Carey, 1st Earl of Monmouth. Mordaunt's father, John Mordaunt, was created Viscount Mordaunt o...

 

2015 film by V. V. Vinayak Akhil: The Power of JuaFilm posterDirected byV. V. VinayakScreenplay byV. V. VinayakStory byVeligonda SrinivasProduced byNithiinSudhakar ReddyStarringAkhil AkkineniSayyeshaaCinematographyAmol RathodEdited byGautham RajuMusic byAnup RubensProductioncompanySreshth MoviesRelease date 11 November 2015 (2015-11-11) Running time130 minutesCountryIndiaLanguageTeluguBudget₹50 crore[1]Box officeest. ₹33.65 crore[2] Akhil: The Power of Jua i...

 

المدمرة نوع 055 الصينية   النوع مدمرة صواريخ موجهة  الجنسية الصين  المشغل بحرية جيش التحرير الشعبي  المشغلون الحاليون وسيط property غير متوفر. المشغلون السابقون وسيط property غير متوفر. التكلفة وسيط property غير متوفر. منظومة التعاريف الاَلية للسفينة وسيط property غير متوفر. Type 052D...

Disambiguazione – Se stai cercando il dipinto nella Galleria Estense, vedi Perla di Modena. La PerlaAutoreGiulio Romano su disegno di Raffaello Data1518-1520 circa Tecnicaolio su tavola Dimensioni144×115 cm UbicazioneMuseo del Prado, Madrid La Perla è un dipinto a olio su tavola (144x115 cm) di Raffaello, databile al 1518-1520 circa e attualmente conservato nel Museo del Prado di Madrid. Indice 1 Storia 2 Bibliografia 3 Voci correlate 4 Altri progetti 5 Collegamenti esterni Storia L'...

 

Автошлях B30 Автошлях B30 у МеккенбойреніЗагальні даніКраїна  НімеччинаНомер B 30Землі БаваріяБаден-ВюртембергСмуги переважно чотири смуги шосеподібніДовжина 102 кілометрНапрямок Північ-південьпочаток Новий Ульмкінець ФрідріхсгафенДорожнє покриття асфальтобетонЗ'єд...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!