Сульфи́т на́трия (сернистокислый натрий) — неорганическое соединение, соль натрия и сернистой кислоты
с химической формулой Na2SO3. Белый порошок или кристаллы с солёным вкусом. Важная пищевая добавка, используемая в пищевой промышленности как консервант, антиоксидант, отбеливатель и стабилизатор цвета продуктов питания➤. Входит в свод международных пищевых стандартов Кодекс Алиментариус под названием E221. Помимо пищевого применения, используется также в фотографии, при изготовлении тканей и вискозного волокна, при обработке руд цветных металлов и для обезвреживания сточных вод.
В фотографии впервые было использовано в 1882 году Х. Б. Беркли для пирогаллоловых проявителей с целью уменьшить пятна, возникающие на фотоматериале в процессе обработки. С 1882 года многие составы включали в себя сульфитные ионы, как правило с целями защиты проявителя от окисления, но в целом роль этих ионов была малопонятна и только спустя годы исследований удалось выявить значительный ряд функций этого соединения в составе проявляющих растворов[2].
Физические свойства
Соединение имеет вид бесцветных кристаллов гексагональной сингонии с параметрами: a=0,5459 нм, с=0,6160 нм, z=2, пространственная группа C3, также выпускается в виде мелкого белого порошка, иногда имеющего розоватый оттенок. Обладает холодящим солёным вкусом и слабым запахом диоксида серы. Молярная масса 126,04 г/моль, плотность 2,633 г/см3. Растворим в воде, при этом с ростом температуры растворимость сначала растёт, достигая максимума растворимости при 33,4 °C, затем начинает снижаться; растворимость составляет (в 100 г воды): 14,29 г (0 °C), 26,10 г (20 °C), 36,99 г (40 °C), 29,20 г (80 °C). Также растворим в этиловом спирте, нерастворим в жирах и маслах[3][4].
Образует гептагидрат Na2SO3·7H2O при кристаллизации из водных растворов ниже 33,4 °C. Гептагидрат сульфита натрия имеет молярную массу 252,14 г/моль и плотность 1,539 г/см3[3][4].
Химические свойства
Сульфит натрия устойчив на воздухе при комнатной температуре, но при сильном нагревании разлагается с образованием плава сульфата натрия и сульфида натрия[5][3]:
Гептагидрат сульфита натрия во влажном воздухе легко окисляется до сульфата натрия, для замедления окисления используют ингибиторы — гидрохинон, пирогаллол, 1,4-фенилендиамин. В сухом воздухе гептагидрат не окисляется, но частично теряет кристаллизационную воду, полностью обезвоживаясь при температуре 150—160 °C[3].
Водные растворы сульфита натрия имеют щелочную реакцию, при их подкислении происходит выделение диоксида серы[6].
Многочисленные исследования свойств сульфита натрия в составе проявляющих растворов показали, что действие этого соединения не ограничивается узкой областью снижения количества пятен на эмульсии, образующихся в процессе обработки в некоторых окрашивающих проявителях, для чего это соединение было предложено изначально. Практически сразу сульфит натрия стал использоваться в своей роли основного универсального сохраняющего вещества, что было вызвано его многоаспектным действием на фотографические составы при всех этапах проявления и хранения растворов[7].
Зависимость скорости окисления водного раствора смеси сульфита и метола при pH 6,6[8]. Ось X — доля сульфита в смеси; Ось Y — скорость поглощения O2, см3/мин.
Основная роль сульфита натрия в составе фотографических проявляющих растворов заключается в защите органических проявляющих веществ от окисления кислородом воздуха. При высоком значении pH раствора проявляющее вещество в отсутствие сульфита быстро окисляется, становясь фотографически неактивным. Например, гидрохинон сначала превращается в хинон, вследствие чего раствор приобретает жёлтую окраску, а затем в фотографически неактивный оксихинон, окрашивающий раствор в тёмно-коричневый цвет. Небольшое количество сульфита натрия резко замедляет этот процесс за счёт того, что вместо гидрохинона с кислородом в первую очередь будет реагировать сам сульфит с образованием сульфата натрия. Присутствие же органического проявляющего вещества, в свою очередь, является ингибитором процесса окисления сульфита кислородом[9].
Точный механизм ингибирования окисления органических проявляющих веществ неизвестен, но предполагается, что он обусловлен связыванием сульфитом натрия окрашенных окисленных форм проявляющих веществ, которые в несвязанном состоянии катализируют дальнейшее окисление своей неокисленной формы[9].
Окисление гидрохинона кислородом воздуха в растворах, содержащих сульфит натрия, будет происходить уже не с образованием хинона и оксихинона, а с образованием бесцветного добезилата натрия, который также является проявляющим веществом[9]:
+ O2 + 2 Na2SO3 + Na2SO4 + NaOH
Разрыв цепи полимеризации
При проявлении гидрохиноном и его производными в растворе образуются семихиноны — высокоактивные и нестабильные соединения. Они имеют тенденцию к полимеризации в гуминовые кислоты, цепи которых в типичных условиях для фотографического проявления образуются из порядка 10 молекул окисленных остатков гидрохинона и имеют тёмную окраску. Так как на стадии образования семихинона сульфит реагирует с ним, то полимеризации, как правило, не происходит, а следовательно, не будет и каталитического воздействия данных полимерных соединений на неокисленную форму проявляющего вещества. Тем не менее, для пирогаллола сульфит не способен взаимодействовать с нерастворимыми окрашенными продуктами окисления, аналогично и для слабоокрашенных продуктов окисления фенидона и L-аскорбиновой кислоты[7].
Обесцвечивающий агент
Сульфит натрия в описанном выше процессе связывания окрашенных форм образует бесцветные соединения, вместо сильноокрашенных, тем самым снижая нежелательные пятна и окраску результирующего изображения[7].
Поддержание активности проявления
Окисленные остатки проявляющего вещества в растворе, хотя и непосредственно не реагируют с галогенидом серебра в эмульсии, но изменяют pH среды и другие её показатели, что может вести либо к нарастанию скорости проявления, либо к её спаду. Лишь немногие проявляющие вещества не дают подобного эффекта. Рост активности наблюдается в проработавших растворах проявляющих веществ, имеющих активные гидроксогруппы, например у глицина-фото. Если же проявляющее вещество имеет только аминогруппы, то скорость проявления будет падать. Превращение окисленных форм в сульфонаты при реакции с сульфитом стабилизирует и поддерживает активность, тем самым позволяя избегнуть нежелательного пере- или недопроявления[7].
Процесс насыщения раствора диоксидом проводят под тягой при 40 °C, после этого кристаллизуют раствор, защищая его от действия кислорода, выход реакции 80%[5].
выделяют кристаллизацией при 100—105 °C. Если процесс проводится из технического продукта, то для осаждения примесей кальция, магния и других металлов в раствор предварительно добавляют небольшое количество гидроксида натрия и отфильтровывают выпавший осадок. Продукт стехиометрического состава при этом способе можно получить только в атмосфере водорода[5];
В пищевой промышленности используется как консервант. Кодекс Алиментариус допускает индивидуальное использование или вместе с другими сульфитами, например, для морских полупродуктов до 300 мг/кг и до 30 мг/кг готовых продуктов, в замороженных картофельных изделиях до 50 мг/кг, а также в концентрате ананасового сока до 500 мг/кг. В РФ разрешён в различных готовых продуктах с концентрацией до 500 мг / кг (для сушёных фруктов и орехов) и в некоторых полупродуктах до 3 г/кг (для полупродуктов из вишни), в частности, в колбасных издениях до 450 мг/кг, в винах до 300 мг/кг. При содержании менее 10 мг/кг (в расчёте на диоксид серы) сульфит натрия допускается не указывать на этикетке[4].
Применяют для удаления следов хлора после отбеливания тканей, для удаления серы из вискозного волокна после формования, как флотореагент для руд цветных металлов, в производстве пестицидов, для обезвреживания сточных вод, содержащих хром[3].
В фотографии используют как основное сохраняющее вещество в проявителях, входит в состав фиксажей и других растворов[10][3].
В косметике применяется с допустимым содержанием 0,2% (свободного диоксида серы)[4].
Безопасность
Временно допустимая концентрация в воздухе составляет 0,1 мг/м3[3].
Гурлев Д. С. Справочник по фотографии (обработка фотоматериалов). — К.: Тэхника, 1988. — ISBN 5-335-00125-4.
Карякин Ю. В., Ангелов И. И. Чистые химические вещества. — М.: Химия, 1974. — 408 с.
Редько А. В. Химия фотографических процессов. — СПб. : НПО "Профессионал", 2006. — С. 837—954. — 1464 с. — (Новый справочник химика и технолога / ред. Москвин А. В. ; вып. Общие сведения. Строение вещества. Физические свойства важнейших веществ. Ароматические соединения. Химия фотографических процессов. Номенклатура органических соединений. Техника лабораторных работ. Основы технологии.). — ISBN 978-5-91259-013-9.
Сарафанова Л. А. Пищевые добавки: Энциклопедия. — 2-е изд., испр. и доп.. — СПб.: ГИОРД, 2004. — 808 с. — ISBN 5-901065-79-04.
Стасиневич Д. С. Натрия сульфит : статья // Краткая химическая энциклопедия / Редкол.: Кнунянц И. Л. (отв. ред.) и др.. — М. : Советская энциклопедия, 1964. — Т. 3: Мальтаза—Пиролиз. — С. 384.
Haist G. M. Modern Photographic Processing. — New York, Chichester, Brisbane, Toronto: John Whiley and sons, 1979. — Т. 1. — (Photographic science and technology and graphic arts). — ISBN 0-471-02228-4.