Олово было известно человеку уже в IV тысячелетии до н. э. Этот металл был малодоступен и дорог, поэтому изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии (в Книге Чисел). Олово является (наряду с медью) одним из компонентов оловянистой бронзы, изобретённой в конце или середине III тысячелетия до н. э. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: XXXV—XI века до н. э.).
Чистое олово получено не ранее XII века, о нём упоминает в своих трудах Р. Бэкон. До этого олово всегда содержало переменное количество свинца. Хлорид SnCl4 впервые получил А. Либавий в 1597 г. Аллотропию олова и явление «оловянной чумы» объяснил Э. Коген в 1911 г.
Происхождение названия
Латинское название stannum, связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова; к IV веку н. э. этим словом стали называть собственно олово[6].
Слово олово — общеславянское, однако в некоторых славянских языках такое же или однокоренное слово (пол.ołów, чеш.olovo, серб.олово, бел.волава и др.) используется для обозначения другого, внешне похожего металла — свинца. Слово олово имеет соответствия в балтийских языках (ср. лит.alavas, alvas, латыш.alva — «олово», прусск.alwis — «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкоеelo — «жёлтый», лат.albus — «белый» и пр.), так что металл назван по цвету[7].
Простое вещество олово полиморфно. В обычных условиях оно существует в виде β-модификации (белое олово), устойчивой выше +13,2 °C. Белое олово — серебристо-белый, мягкий, пластичный металл, образующий кристаллы тетрагональной сингонии, пространственная группаI4/amd, параметры ячейки a = 0,58197 нм, c = 0,3175 нм, Z = 4. Координационное окружение каждого атома олова в нём — октаэдр. Плотность β-Sn равна 7,228 г/см3. При сгибании прутков олова слышен характерный хруст от взаимного трения кристаллитов[8].
При охлаждении белое олово переходит в α-модификацию (серое олово). Серое олово образует кристаллы кубической сингонии, пространственная группаFd3m, параметры ячейки a = 0,646 нм, Z = 8 со структурой типа алмаза. В сером олове координационный полиэдр каждого атома — тетраэдр, координационное число 4. Фазовый переходβ-Sn в α-Sn сопровождается увеличением удельного объёма на 25,6 % (плотность α-Sn составляет 5,75 г/см3), что приводит к рассыпанию олова в порошок. Энтальпия перехода α → βΔH = 2,08 кДж/моль. Одна модификация переходит в другую тем быстрее, чем ниже температура окружающей среды. При −33 °C скорость превращений становится максимальной. Тем не менее белое олово можно переохладить до гелиевых температур. Белое олово превращается в серое также под действием ионизирующего излучения[9].
Из-за сильного различия структур двух модификаций олова разнятся и их электрофизические свойства. Так, β-Sn — металл, а α-Sn относится к числу полупроводников. Ниже 3,72 Кα-Sn переходит в сверхпроводящее состояние. Атомы в кристаллической решётке белого олова находятся в электронном s2p2-состоянии. Серое олово — ковалентный кристалл со структурой алмаза и электронным sp3-состоянием. Белое олово слабо парамагнитно, атомная магнитная восприимчивость χ = +4,5·10−6 (при 303 К), при температуре плавления становится диамагнитным, χ = −5,1·10−6. Серое олово диамагнитно, χ = −3,7·10−5 (при 293 К).
Соприкосновение серого олова и белого приводит к «заражению» последнего, то есть к ускорению фазового перехода по сравнению со спонтанным процессом из-за появления зародышей новой кристаллической фазы. Совокупность этих явлений называется «оловянной чумой».[10] Нынешнее название этому процессу в 1911 году дал Э. Коген (он называл его также «музейной болезнью»[11]), однако это явление было известно ещё в античности, оно упоминается Аристотелем и Плутархом[11]. Начало научного изучения этого фазового перехода было положено в 1870 году работами петербургского учёного, академика Ю. Фрицше. Много ценных наблюдений и мыслей об этом процессе высказано Д. И. Менделеевым в его «Основах химии».
Одним из средств предотвращения «оловянной чумы» является добавление в олово стабилизатора, например висмута. С другой стороны, ускоряет процесс перехода белого олова в серое при не очень низких температурах катализатор хлорстаннат аммония (NH4)2SnCl6[12].
Некоторые историки указывают на «оловянную чуму» как на одно из обстоятельств поражения армии Наполеона в России в 1812 году — сильные морозы привели к превращению оловянных пуговиц на мундирах солдат в порошок[14].
Оловянная чума погубила многие музейные экспонаты. В музейных собраниях России оловянные предметы большой древности отсутствуют, имеются лишь единичные предметы начиная с XIV века, существующие экспонаты относятся в основном к XVIII и последующим векам. Так, разрушился целый ряд блюд и мисок XVII века из казны царевны Татьяны Михайловны, сестры царя Алексея Михайловича, и из казны его дочерей Феодосии Алексеевны и Софья Алексеевны в ризнице Троицкого собораУспенского девичьего монастыря в Александрове, где во время послереволюционной разрухи после 1917 года надолго прекращалось отопление[11].
Олово, поражённое «чумой», после переплавки снова становится белым. Однако для превращения серого олова в белое достаточно выдержать его при повышенной температуре, по одним источникам, выше +40 °C, по другим — выше +59 °C[11]. Реставраторы для остановки разрушения предметов, поражённых «оловянной чумой», выдерживают их в кипящей воде в течение часа и более[11].
При высоких давлениях обнаружены ещё две модификации олова: γ-олово (переход при температуре 161 °C и давлении около 4 ГПа, при комнатной температуре и давлении 10 ГПа) и σ-олово (переход при температуре около 1000 °C и давлении выше 21 ГПа)[15].
Природное олово состоит из десяти стабильных нуклидов с массовыми числами 112 (в смеси 0,96 % по массе), 114 (0,66 %), 115 (0,35 %), 116 (14,30 %), 117 (7,61 %), 118 (24,03 %), 119 (8,58 %), 120 (32,85 %), 122 (4,72 %) и 124 (5,94 %). Для некоторых из них энергетически возможен двойной бета-распад, однако экспериментально он пока (2018 г.) не наблюдался, поскольку предсказываемый период полураспада очень велик (более 1020 лет)[16].
Олово обладает наибольшим среди всех элементов числом стабильных изотопов, что связано с тем, что 50 (число протонов в ядрах олова) является магическим числом — оно составляет заполненную протонную оболочку в ядре и повышает тем самым энергию связи и стабильность ядра. Известны два дважды магических изотопа олова, оба они радиоактивны, так как удалены от полосы бета-стабильности: нейтронодефицитное 100Sn (Z = N = 50) и нейтроноизбыточное 132Sn (Z = 50, N = 82).
При комнатной температуре олово, подобно соседу по группе германию, устойчиво к воздействию воздуха или воды. Такая инертность объясняется образованием поверхностной плёнки оксидов. Заметное окисление олова на воздухе начинается при температурах выше 150 °C:
При нагревании олово реагирует с большинством неметаллов. При этом образуются соединения в степени окисления +4, которая более характерна для олова, чем +2. Например:
Растворяется в разбавленных кислотах (HCl, H2SO4)[17]:
Олово реагирует c концентрированной соляной кислотой. При этом серое олово (α-Sn) образует раствор хлорида олова(II), а белое (β-Sn) — хлорида олова(IV)[18]:
Состав продукта реакции олова с азотной кислотой зависит от концентрации кислоты. В концентрированной азотной кислоте (60 %) образуется оловянная кислотаβ-SnO2·nH2O[17] (иногда её формулу записывают как H2SnO3). При этом олово ведёт себя как неметалл:
При взаимодействии с разбавленной азотной кислотой (3—5 %) образуется нитрат олова(II)[17]:
Окисляется растворами щелочей до гидроксостанната(II), который в горячих растворах склонен к диспропорционированию[17]:
Олово(II)
Менее устойчивая степень окисления, чем (IV). Соединения олова(II) имеют высокую восстановительную активность и легко диспропорционируют[17]:
На воздухе соединения быстро окисляются кислородом, как в твёрдом виде[17], так и в растворах[18]:
Сильным восстановителем является «оловянная соль» SnCl2·2H2O[17]. Она может восстанавливать золото(III) до золота(0), что применяется для качественного определения золота в растворах (образуется чёрное мелкодисперсное золото):
Оксид можно получить действием аммиака на горячий раствор хлорида олова(II) в атмосфере СO2[17]:
Также оксид получается при слабом нагревании гидроксида олова(II) Sn(OH)2 в вакууме или осторожном нагревании некоторых солей:
В растворах солей олова(II) идёт сильный гидролиз[17]:
При действии на раствор соли Sn(II) растворами сульфидов выпадает осадок сульфида олова(II):
Этот сульфид может быть легко окислен до сульфидного комплекса раствором полисульфида натрия, при подкислении превращающегося в осадок cульфида олова(IV)[17]:
При гидролизе растворов солей олова(IV) образуется белый осадок — так называемая α-оловянная кислота[17]:
Свежеполученная α-оловянная кислота растворяется в кислотах и щелочах[17]:
При хранении α-оловянная кислота стареет, теряет воду и переходит в β-оловянную кислоту, которая отличается большей химической инертностью. Данное изменение свойств связывают с уменьшением числа активных HO-Sn группировок при стоянии и замене их на более инертные мостиковые -Sn-O-Sn- связи[17].
Гидрид олова — станнан SnH4 — можно получить по реакции:
Этот гидрид весьма нестоек и медленно разлагается уже при температуре 0 °C.
Четырёхвалентное олово образует обширный класс оловоорганических соединений, используемых в органическом синтезе, в качестве пестицидов и др.
Нахождение в природе
Олово — редкий рассеянный элемент, по распространённости в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2⋅10−4 до 8⋅10−3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn).
В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на литр, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³.
Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особенности его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова в виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).
Формы нахождения
Основная форма нахождения олова в горных породах и минералах — рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах[21].
Твёрдая фаза. Минералы
В общем можно выделить следующие формы нахождения олова в природе:
Рассеянная форма: конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W — с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc — с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.
Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует железо Fe+2: биотиты, гранаты, пироксены, магнетиты, турмалины и так далее. Эта связь обусловлена изоморфизмом, например, по схеме Sn+4 + Fe+2 → 2Fe+3. В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес. %) (особенно в андрадитах), эпидотах (до 2,84 вес. %) и так далее.
На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Россия, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротинегрейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2+1Fe+2SnS4 или тиллита PbSnS2 и других минералов.
Собственно минеральные формы
Самородные элементы, сплавы и интерметаллические соединения
Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм вместе с Sn выявлены Fe, Al, Cu, Ti, Cd и так далее, не считая уже известные самородные платиноиды, золото и серебро. Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и другие, а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие[22][23].
Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях[23]:
Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроиты Алдана и так далее; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.
Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и так далее[24].
Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и прочие.
Касситерит (от греч. kassiteros — олово) — главный рудный минерал для получения олова, химическая формула SnO2. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зёрна, сплошные массивные агрегаты, в которых зёрна минерала достигают в размере 3—4 мм и даже больше. В чистом виде бесцветные кристаллы, примеси придают минералу самые различные цвета.
Плотность 6040—7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов).
сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (месторождения Приморья), коломорфные и криптокристаллические выделения и скопления (месторождения Приморья); кристаллическая форма — главная форма выделения касситерита.
Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2+2O[25]; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974; Воронина Л. Б., 1979); «варламовит» — продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления — гидромартит 3SnO·H2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и другие.
Силикаты
Известна многочисленная группа силикатов олова, представленная малаяитом CaSn[SiO5][26]; пабститом Ba(Sn, Ti)Si3O9[25], стоказитом Ca2Sn2Si6O18·4H2O и др. Малаяит образует даже промышленные скопления.
Шпинелиды
Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16О32 (Peterson E. U., 1986).
Сульфидные соединения олова
Включает различные соединения олова с серой. Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого, отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром, медью, имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождениях халькопирита CuFeS2 с образованием парагенезиса касситерит — халькопирит.
Станнин (от лат.stannum — олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях России. На ряде месторождений России (Приморье, Якутия) и Средней Азии (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10—40 % общего олова. Часто образует вкраплённость в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.
Коллоидная форма
Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.
Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении .
Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2SnkO2k+1, SnkO2k−1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.
Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек HmSn2nSinOp, причём m ≤ 8[27], или Hs[SiO2n(SnOm)d] (Некрасов И. Я. и др., 1973).
Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.
Формы нахождения олова в жидкой фазе
Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся информация основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову[21].
Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:
Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяются подгруппы:
Простые ионы Sn+2 и Sn+4 в основном обнаружены в магматических расплавах, а также в гидротермальных растворах, обладающих низкими значениями рН. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.
Галогениды — SnF2, SnF40, SnCl40. Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.
Гидроксильные соединения. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т < 280 °C в слабокислых или нейтральных условиях при рН = 7—9. Соединения Sn(OH)4 и Sn(OH)3+ устойчивы при рН= 7—9, тогда как Sn(OH)2+2 и Sn(OH)+2 — при рН < 7. Довольно часто группы (ОН)−1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4-kFk или Sn(OH)4−kFk-nCln. В целом соединение Sn(OH)3F устойчиво при Т = +25…+50 °C, а Sn(OH)2F2 — при Т = 200 °C.
Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4−4 или SnS3−2 при рН > 9; SnS2O−2 (pH = 8—9) и Sn(SH)4 (pH = 6). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.
Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2[Sn(OH)6], Na2[SnF6], Na2[Sn(OH)2F4] и пр. Эксперименты показали, что комплекс Sn(OH)4F2−2 будет преобладать при Т = 200 °C.
Коллоидные и олово-кремнистые соединения. Об их существовании говорит присутствие на многих месторождениях коломорфных выделений касситерита.
Промышленные типы месторождений олова
Описанные выше геохимические особенности олова находят косвенное отражение в формационной классификации оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.
А. Формация оловоносных гранитов. Касситерит установлен в акцессорной части гранитов.
Б. Формация редкометальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и прочими.
В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов.
Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и другими минералами.
Д. Формация кварц-касситеритовая. Распространена на северо-востоке России. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и другим.
Е. Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья России.
Ж. Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы:
1) штокверковое олово-вольфрамовое оруденение;
2) рудные тела квар-касситерит-арсенопиритового типа;
3) продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа.
З. Формация оловянно-скарновая.
И. Формация деревянистого олова (риолитовая формация).
К. Формация основных и ультраосновных пород (по И. Я. Некрасову)[27].
Л. Формация щелочных пород Украины (по В. С. Металлиди, 1988).
Производство
В процессе производства рудоносная порода (касситерит) подвергается дроблению до размеров частиц в среднем ~10 мм, в промышленных мельницах, после чего касситерит за счёт своей относительно высокой плотности и массы отделяется от пустой породы вибрационно-гравитационным методом на обогатительных столах. В дополнение применяется флотационный метод обогащения/очистки руды. Таким образом удаётся повысить содержание олова в руде до 40—70 %. Далее проводят обжиг концентрата в кислороде для удаления примесей серы и мышьяка. Полученный концентрат оловянной руды выплавляется в печах. В процессе выплавки восстанавливается до свободного состояния посредством применения в восстановлении древесного угля, слои которого укладываются поочерёдно со слоями руды, или алюминием (цинком) в электропечах: . Особо чистое олово полупроводниковой чистоты готовят электрохимическим рафинированием или методом зонной плавки[28].
Цена килограмма металлического олова на Лондонской бирже металлов в 2018—2019 была близка к 20 долларам, с наступлением пандемии COVID-19 в 2020 году снизилась, опускаясь ниже 14 долларов, однако в 2021—2022 цена существенно выросла, дойдя в июле 2021 года почти до 34 долларов, превысив рекорд 2011 года[29], и поставив новый рекорд в 2022 году — более 48 долларов. По состоянию на конец февраля — начало марта 2023 года килограмм олова стоит около 25 долларов[30].
Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).
Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.
Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент.
Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном[31][32].
Физиологическое действие
О роли олова в живых организмах практически ничего не известно. Ежедневное поступление олова с пищей составляет 0,2—3,5 мг, при регулярном потреблении консервированной пищи — до 38 мг. В теле человека содержится примерно (1—2)·10−4 % олова, наибольшая концентрация наблюдается в кишечнике.[33]
Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров, различных аэрозольных частиц и пыли. При воздействии паров или пыли олова может развиться станноз — поражение лёгких. Газообразное вещество станнан (оловянистый водород) — сильнейший яд, более того, он самовоспламеняется при контакте с воздухом. Также очень токсичны некоторые оловоорганические соединения, такие как тетраэтилолово. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г, интоксикация организма начинается при содержании в организме 250 мг/кг.[33]
Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух в объёмах, превышающих предельно допустимую концентрацию (в частности, определённую по ГОСТ 12.1.005—76. Длительное (в течение 15—20 лет) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом[34].
↑Упоминавшееся в некоторых источниках (например, в «Химической энциклопедии») обнаружение бета-распада олова-124 впоследствии не подтвердилось.
↑ 123456789101112131415Неорганическая химия. В 3-х томах (рус.) / Под ред. Ю. Д. Третьякова. — М.: Издательский центр «Академия», 2004. — Т. 2 : Химия непереходных элементов. — С. 105—153.
↑ 12Шрайвер Д., Эткинс П. Неорганическая химия. В 2-х томах (рус.) / Пер. с англ. М. Г. Розовой, С. Я. Истомина, М. Е. Тамм. — М.: Мир, 2004. — Т. 1. — С. 72, 495.
↑Home (неопр.). Tin Resources. Дата обращения: 11 декабря 2016. Архивировано из оригинала 13 марта 2017 года.
↑Войткевич Г. В., Мирошников А. Е., Поваренных А. С. Краткий справочник по геохимии (рус.). — М.: Недра, 1970.
↑ 12Барсуков В. Л. и др. Основные черты геохимии олова (рус.). — М.: Наука, 1974.
↑Еремеев Н. В. и др. Самородные элементы в лампроидах Центрального Алдана (рус.) // Доклады АН СССР. — 1988. — Т. 303, № 6. — С. 1464—1467.
↑ 12Самородное минералообразование в магматических процессах. Часть I и II. Якутск, 1981
↑Крылова В. В. и др. Олово, свинец и интерметаллические соединения в рудах золото-серебряной формации (рус.) // Труды ЦНИГРИ. — 1979. — Т. 142. — С. 22—28.
↑ 12Некрасов И. Я. Фазовые соотношения в олово-содержащих системах. М.: Наука, 1976.
↑Говоров И. Н. Геохимия рудных районов Приморья (рус.). — М.: Наука, 1977.
↑ 12Некрасов И. Я. Олово в магматических и постмагматических процессах (рус.). — М.: Наука, 1974.
↑Большаков К. А., Фёдоров П. И. Химия и технология малых металлов (рус.). — М. — Т. 1984.
Russland Semjon Warlamow Geburtsdatum 27. April 1988 Geburtsort Kujbyschew, Russische SFSR Größe 185 cm Gewicht 84 kg Position Torhüter Nummer #40 Fanghand Links Draft NHL Entry Draft 2006, 1. Runde, 23. PositionWashington Capitals Karrierestationen 2004–2008 Lokomotive Jaroslawl 2008–2011 Washington Capitals 2011–2019 Colorado Avalanche 2012 Lokomotive Jaroslawl seit 2019 New York Islanders Semjon Alexandrowitsch Warlamow (russisch Семён Александрович Ва
Kastel PorciaSchloss Porcia (Jerman)Informasi umumGaya arsitekturRenaisansKotaSpittal an der DrauNegaraKärnten, AustriaMulai dibangun1533KlienGabriel von Salamanca-OrtenburgPemilikSpittal an der Drau Schloss Porcia (Kastel Porcia) adalah sebuah kastel yang terletak di kota Spittal an der Drau di negara bagian Kärnten, Austria. Kastel ini dibangun dengan gaya Renaisans. Sejarah Pembangunan kastel ini dimulai pada tahun 1533 atas perintah dari Graf Gabriel von Salamanca-Ortenburg (1489–1539...
Max Rabinoff, salah satu tokoh impraserio. Impresario (dari bahasa Italia berarti usaha) adalah seseorang yang mengorganisir dan biasanya membiayai sebuah pagelaran konser, permainan drama; dapat dianalogikan atau serupa dengan manajer artis atau produser film atau produser televisi.[1] Asal muasal kata impresario ditemukan pada masa kondisi sosial ekonomi opera Italia, yakni pada masa pertengahan abad 18-an atau 1830-an, impresario merupakan figur utama sesi pengorganisasian lirik....
Safrizal Z.A.Penjabat Gubernur Bangka BelitungPetahanaMulai menjabat 13 November 2023PresidenJoko WidodoPendahuluSuganda Pandapotan PasaribuDirektur Jenderal Bina Administrasi Kewilayahan Kementerian Dalam NegeriPetahanaMulai menjabat 27 Juli 2020Penjabat Gubernur Kalimantan SelatanMasa jabatan18 Februari 2021 – 25 Agustus 2021PresidenJoko WidodoPendahuluSahbirin NoorPenggantiSahbirin Noor Informasi pribadiLahir21 April 1970 (umur 53)Banda Aceh, Daerah Istimewa Aceh, I...
Chaire à prêcher de l'église Notre-Dame de PlouaretPrésentationType Chaire à prếcherDestination initiale Culte catholique, prédicationDestination actuelle Culte catholiqueMatériau BoisConstruction XVIIe sièclePropriétaire Commune de PlouaretPatrimonialité Inscrit MH (1974)LocalisationPays FranceDépartement Côtes-d'ArmorCommune PlusquellecCoordonnées 48° 36′ 43″ N, 3° 28′ 23″ OLocalisation sur la carte de BretagneLocalisat...
Japanese adult visual novel game Phantom of InfernoJapanese DVD Cover of Phantom of Inferno GameDeveloperNitroplusPublisherJP: Nitroplus (PC) JP: Digiturbo (DVD, Xbox 360) JP: PrincessSoft (PS2) NA: Hirameki (DVD)GenreEroge, Visual novelPlatformPC, DVD, PS2, Xbox 360ReleasedJP: February 25, 2000 (PC) JP: October 26, 2001 (DVD) NA: September 10, 2002 (DVD) JP: May 22, 2003 (PS2) JP: September 17, 2004 (PC, Integration) JP: October 25, 2012 (Xbox 360) JP: August 30, 2013 (PC, remake) Light nove...
Brazilian journalist Monica WaldvogelWaldvogel at the 2009Born (1956-02-09) February 9, 1956 (age 67)São Paulo, BrazilNationalityBrazilianOccupation(s)Journalist and AnchorYears active1984–presentNotable credit(s)Jornal Hoje anchorJornal da Globo anchor Monica Waldvogel (born February 9, 1956, in São Paulo) is a Brazilian journalist.[1] She graduated in Journalism in 1977. She was editor-in-chief and news presenter of Jornal da Globo[2] and Jornal Hoje. Since...
30°44′56″S 121°27′58″E / 30.749°S 121.466°E / -30.749; 121.466 Suburb of Kalgoorlie, Western AustraliaKalgoorlieKalgoorlie, Western AustraliaGreat Boulder Co.'s 2 ft (610 mm) gauge Kerr, Stuart 0-4-0T loco N° 839 of 1903 at KalgooliePopulation3,711 (SAL 2021)[1]Established1893Postcode(s)6430Area4.0 km2 (1.5 sq mi)LGA(s)City of Kalgoorlie–BoulderState electorate(s)KalgoorlieFederal division(s)O'Connor Suburbs around K...
A section of pathway that changes direction This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Road curve – news · newspapers · books · scholar · JSTOR (November 2018) (Learn how and when to remove this template message) Road curves are irregular bends in roads to bring a graduation change of direction. Similar...
K computer Активность июнь 2011-август 2019 Спонсоры Министерство образования, культуры, спорта, науки и технологий, Япония Операторы Fujitsu Местонахождение Институт физико-химических исследований, Кобе Архитектура 88 128 процессоров SPARC64 VIIIfx, OC Linux Мощность 12,6 Мегаватт Производител...
British computer security expert Professor Steven MurdochFBCS FIETBornSteven James MurdochNationalityBritishAlma materUniversity of CambridgeKnown forTor project[3][5]EMV/Chip and PIN[3][6]Scientific careerFieldsSecurityPrivacyAnonymous communication[1][2]Chip and PINEuropay, Master and Visa (EMV)[3]InstitutionsComputer Science Department, University College LondonThesisCovert channel vulnerabilities in anonymity systems...
Component city in Batangas, Philippines Component city in Calabarzon, PhilippinesTanauan TanawanComponent cityCity of TanauanF. Laurena Street in Tanauan FlagSealNickname(s): Cradle of Noble Heroes The City of ColorsPremiere City of CALABARZONAnthem: Himno ng Tanauan, Tanauan Bayan Ko[1][2] English: Tanauan Hymn, Tanauan My TownMap of Batangas with Tanauan highlightedOpenStreetMapTanauanLocation within the Philippines, Captaincy General of the PhilippinesCoordinates: 14°...
Stream in Pennsylvania, USA Cherry RunTributary to Oil CreekLocation of Cherry Run mouthShow map of PennsylvaniaCherry Run (Oil Creek tributary) (the United States)Show map of the United StatesLocationCountryUnited StatesStatePennsylvaniaCountyVenangoCityRousevillePhysical characteristicsSourceon divide of Oil Creek and Pithole Creek • locationabout 0.5 miles southwest of East Shamburg, Pennsylvania • coordinates41°33′50″N 079°37′56″W / &...
Comet C/1910 A1 (Great January Comet, Daylight Comet)C/1910 A1, the Daylight or Great January Comet, photograph from Lowell ObservatoryDiscoveryDiscovered byMultiple observersDiscovery dateJanuary 12, 1910DesignationsAlternative designations1910 I1910aOrbital characteristicsEpochJanuary 9, 1910 (JD 2418680.5)Number ofobservations25 for JPL #3Aphelion~1150 AU (inbound)~900 AU (epoch 2000)[1]Perihelion0.12896 AU (19.292 million km)Semi-major axis~440 AU (epoch 2...
Annual hurling competition for intermediate clubs in Westmeath Westmeath Intermediate Hurling ChampionshipIrishCraobh Idirmheánach Iomána na hIarmhíCodeHurlingFounded1985; 39 years ago (1985)Region Westmeath (GAA)TrophyAdrian Murray CupNo. of teams6Title holders Castletown Geoghegan (1st title)Most titles St Oliver Plunkett's (6 titles)SponsorsSlevin's CoachesOfficial websiteWestmeath GAA The Westmeath Intermediate Hurling Championship (known for sponsorship reasons as th...
Опис Емблема ФК «Агрофірма П'ятихатська». Джерело http://fc-ap.com.ua/?page_id=2236 Час створення 30.11.2014 Автор зображення невідомий Ліцензія Відповідно до статті 8 Закону України про авторське право і суміжні права, наступні об'єкти не охороняються авторським правом: 1) повідомлення пр...
1999 video game 1999 video gameNeed for Speed: High StakesNorth American cover art featuring a Porsche 911 Turbo and a Ferrari 550 MaranelloDeveloper(s)EA Canada (PS)EA Seattle (PC)Publisher(s)Electronic ArtsProducer(s)Hanno LemkeComposer(s)Rom Di PriscoSaki KaskasCrispin HandsSeriesNeed for SpeedPlatform(s)PlayStationMicrosoft WindowsReleasePlayStationNA: March 24, 1999EU: April 2, 1999WindowsNA: June 16, 1999UK: June 25, 1999Genre(s)RacingMode(s)Single-player, multiplayer Need for Speed: Hi...