Y-хромосому как определяющую пол хромосому идентифицировала в 1905 году Нетти Стивенс, изучая хромосомы у большого мучного хрущака. Эдмунд Уилсон самостоятельно обнаружил те же механизмы в том же году. Нетти Стивенс предположила, что хромосомы всегда существуют в парах и что Y-хромосома является парой Х-хромосомы, открытой в 1890 году Германом Хенкингом. Она поняла, что идея, высказанная Кларенсом Мак-Клангом, что Х-хромосома определяет пол, была неверной и что определение пола, по сути, связано с наличием или отсутствием Y-хромосомы. Стивенс назвала хромосому «Y» просто в алфавитном порядке, вслед за «Х» Хенкинга[2].
Общие сведения
Клетки большинства млекопитающих содержат две половых хромосомы: Y-хромосома и X-хромосома — у самцов, две X-хромосомы — у самок. У некоторых млекопитающих, например, утконоса, пол определяется не одной, а пятью парами половых хромосом[3]. При этом половые хромосомы утконоса имеют больше сходства с Z-хромосомой птиц[4], а ген SRY, вероятно, не участвует в его половой дифференциации[5].
В человеческой популяции клетки некоторых мужчин содержат две (реже несколько) X-хромосомы и одну Y-хромосому (см. синдром Клайнфельтера); или одну X-хромосому и две Y-хромосомы (XYY-синдром); клетки некоторых женщин содержат несколько, чаще три (см. Трисомия по X-хромосоме) или одну X-хромосомы (см. синдром Шерешевского — Тёрнера). В некоторых случаях наблюдается повреждение гена SRY (с формированием женского XY организма) или его копирование на X-хромосому (с формированием мужского XX-организма) (см. также Интерсексуальность).
Различные типы полиморфизмов, которые содержатся в Y-хромосоме, могут быть поделены на две большие группы: биаллельные и микросателлитные маркеры. Биаллельные маркеры включают однонуклеотидные полиморфизмы (SNP), инсерции и делеции. SNP составляют более 90% от всех полиморфизмов. Другим часто встречающимся типом полиморфизмов являются тандемные повторы, расположенные в некодирующих областях. Они классифицируются в зависимости от длины повтора: сателлитная ДНК, минисателлиты (VNTRs), микросателлиты или короткие тандемные (простые) повторы (STRs). В популяционных исследованиях Y-хромосомы используются главным образом микросателлиты[6].
Происхождение и эволюция у позвоночных
До появления Y-хромосомы
У многих эктотермных («холоднокровных») позвоночных отсутствуют половые хромосомы. Если у них имеются два пола, то пол определяется в большей степени условиями среды, чем генетически. У некоторых из них, в частности рептилий, пол зависит от температуры инкубации; другие являются гермафродитами (то есть каждая особь содержит как мужские, так и женские гаметы).
Происхождение
Считается, что X- и Y-хромосомы произошли от пары идентичных хромосом[7], когда у древних млекопитающих возник ген, один из аллелей (одна из разновидностей) которого приводил к развитию мужского организма[8]. Хромосомы, несущие этот аллель, стали Y-хромосомами, а вторая хромосома в этой паре стала X-хромосомой. Таким образом, X- и Y-хромосомы изначально отличались лишь одним геном. C течением времени, гены, полезные для самцов и вредные (либо не имеющие никакого эффекта) для самок либо развивались в Y-хромосоме, либо перемещались в Y-хромосому в процессе транслокации[9].
Ингибирование рекомбинации
Доказано, что рекомбинация между X- и Y-хромосомами вредна — она приводит к появлению самцов без необходимых генов в Y-хромосоме и самок с ненужными или даже вредными генами, до этого находящимися только в Y-хромосоме. В результате, во-первых, полезные самцам гены накапливались возле генов, определяющих пол, и, во-вторых, рекомбинация в этой части хромосомы подавлялась для сохранения этого, присущего только самцам района[8]. С течением времени гены в Y-хромосоме повреждались (см. следующий раздел), после чего она теряла участки, не содержащие полезных генов, и процесс начинался в соседних участках. В результате многократного повторения этого процесса 95 % человеческой Y-хромосомы не способно к рекомбинации.
Потеря генов
Предположение о потере генов было основано на высокой скорости мутирования, неэффективного отбора и генетического дрейфа. Существует гипотеза о том, что 300 млн. лет назад Y-хромосома человека имела около 1400 генов, однако в научной среде данная гипотеза не нашла ни малейших подтверждений, поскольку ДНК, даже в идеальных условиях, сохраняется не более 1 млн лет[10]. Поэтому используется сравнительный геномный анализ, подразумевающий сравнение с другими видами. Сравнительный геномный анализ, однако, показывает, что некоторые виды млекопитающих испытывают потерю функций в их гетерозиготных половых хромосомах, а сходные с человеческим не испытывают. Сравнительный геномный анализ, как установили недавние исследования Y-хромосом человека и шимпанзе, показал, что человеческая Y-хромосома не потеряла ни одного гена с момента дивергенции человека и шимпанзе около 6—7 миллионов лет назад[11], и потеряла только один ген с момента дивергенции человека и макаки-резус около 25 миллионов лет назад[12][13][8], что доказывает ошибочность данной гипотезы.
Высокая скорость мутирования
Человеческая Y-хромосома частично подвержена высокой скорости мутирования[англ.] в связи со средой, в которой она находится. Так, например, наиболее распространённой мутацией человека, приобретаемой в течение жизни, является потеря Y-хромосомы (LOY) в клетках крови мужчин, связанная с возрастом и курением, которая, видимо, уменьшает продолжительность жизни мужчин[14]. Y-хромосома передается исключительно через сперматозоиды, которые образуются в результате множественных клеточных делений клеток-предшественниц в процессе гаметогенеза. Каждое клеточное деление предоставляет дополнительную возможность для накопления мутаций. К тому же сперматозоиды находятся в высокоокислительной среде яичек, которая стимулирует усиление мутирования. Эти два условия вместе повышают риск мутирования Y-хромосомы в 4,8 раза по сравнению с остальным геномом[8].
Неэффективный отбор
При возможности генетической рекомбинации геном потомства будет отличаться от родительского. В частности, геном с меньшим числом вредных мутаций может быть получен из родительских геномов с большим числом вредных мутаций.
Если рекомбинация невозможна, то при появлении некой мутации можно ожидать, что она проявится и в будущих поколениях, так как процесс обратной мутации маловероятен. По этой причине при отсутствии рекомбинации количество вредных мутаций со временем увеличивается. Этот механизм называется храповиком Мёллера.
Часть Y-хромосомы (у человека — 95 %) неспособна к рекомбинации. Считается, что это — одна из причин, по которой она подвергается порче генов.
Возраст Y-хромосомы
До недавних пор считалось, что X- и Y-хромосомы появились около 300 миллионов лет назад. Однако недавние исследования[15], в частности секвенирование генома утконоса[4], показывают, что хромосомное определение пола отсутствовало ещё 166 млн л. н. при отделении однопроходных от других млекопитающих[5]. Эта переоценка возраста хромосомной системы определения пола базируется на исследованиях, показавших, что последовательности в X-хромосоме сумчатых и плацентарных млекопитающих присутствуют в аутосомах утконоса и птиц[5]. Более старая оценка базировалась на ошибочных сообщениях о наличии этих последовательностей в X-хромосоме утконоса[16][17].
Y-хромосома человека
У человека Y-хромосома состоит из чуть более чем 57 миллионов пар нуклеотидов, что составляет почти 2 % от генома человека[18]. Хромосома содержит 203 гена[19], из которых 63 кодируют белок, а также 397 псевдогенов. Наиболее значимым геном на Y-хромосоме является ген SRY, служащий генетическим «включателем» для развития организма по мужскому типу. Признаки, наследуемые через Y-хромосому, носят название голандрических.
Человеческая Y-хромосома не способна рекомбинироваться с X-хромосомой, за исключением небольших псевдоаутосомных участков на теломерах (которые составляют около 5 % длины хромосомы). Это реликтовые участки древней гомологии между X- и Y-хромосомами. Основная часть Y-хромосомы, которая не подвержена рекомбинации, называется NRY (англ.non-recombining region of the Y chromosome)[20]. Эта часть Y-хромосомы позволяет посредством оценки однонуклеотидного полиморфизма определить прямых предков по отцовской линии.
В 2023 году специалисты заявили о том, что удалось полностью расшифровать Y-хромосому человека. В ходе научной работы был обнаружен 41 ранее неизвестный ген[21][22][23].
Последующая эволюция
В терминальных стадиях дегенерации Y-хромосомы другие хромосомы все чаще используют гены и функции, ранее связанные с ней. Наконец, Y-хромосома полностью исчезает, и возникает новая система определения пола. Несколько видов грызунов достигли этих стадий:
Закавказская слепушонка и некоторые другие виды грызунов полностью потеряли Y-хромосому и SRY. Некоторые из них перенесли гены, присутствующие на Y-хромосоме, на Х-хромосому. У рюкийской мыши оба пола имеет XO-генотип (у человека при таком наборе половых хромосом возникает синдром Шерешевского — Тёрнера), тогда как все особи некоторых видов слепушонок обладают генотипом XX.
Лесные и арктический лемминги и несколько видов в роде южноамериканских полевых хомячков (Akodon) характеризуются наличием фертильных самок, которые обладают генотипом XY, в дополнение к обычным самкам XX, из-за различных модификаций К хромосомам X и Y.
Самки североамериканской полевки Microtus oregoni с одной Х-хромосомой производят только гаметы X, а самцы XY производят Y-гаметы или гаметы, лишенные какой-либо половой хромосомы, из-за нерасхождения хромосом[24].
Вне отряда грызунов у черного мунтжака появились новые X и Y-хромосомы благодаря слиянию предковых половых хромосом и аутосом.
Считается, что у людей Y-хромосома утратила почти 90 % своих изначальных генов и этот процесс продолжается, а её риск мутирования в пять раз выше, чем у других участков ДНК. В ходе исследований учёные пришли к выводу, что теоретически люди могут размножаться без Y-хромосомы. Вполне возможно, что Y-хромосома у людей исчезнет в ходе дальнейших эволюционных изменений[25].
Соотношение полов 1:1
Принцип Фишера показывает, почему почти у всех видов, использующих половое размножение, соотношение полов составляет 1:1, а это означает, что в случае людей 50 % потомства получат Y-хромосому, а 50 % — нет. У. Д. Гамильтон дал следующее объяснение в своей статье 1967 года «Чрезвычайные соотношения полов»:
Предположим, что мужчины рождаются реже, чем женщины.
Новорождённый мужчина имеет лучшие перспективы спаривания, чем новорождённая женщина, и поэтому может рассчитывать на то, что у него будет больше потомства.
Поэтому родители, генетически предрасположенные к рождению самцов, обычно имеют число внуков больше среднего.
Поэтому гены, несущие предрасположенность к рождению мужчин, распространяются, и мужчины рождаются чаще.
По мере того, как соотношение полов приближается к 1:1, преимущество, связанное с производством самцов, угасает.
Те же рассуждения имеют место, если самки заменяют самцов.
↑David Bainbridge. The X in sex: how the X chromosome controls our lives (англ.). — Cambridge, Massachusetts, USA; London, United Kingdom.: Harvard University Press, 2003. — P. 3-15. — 224 p. — ISBN : 0-674-01028-0.
↑Lars A. Forsberg. Loss of chromosome Y (LOY) in blood cells is associated with increased risk for disease and mortality in aging men : [англ.] // Human Genetics. — 2017. — doi:10.1007/s00439-017-1799-2. — PMID28424864. — PMC5418310.
↑Zhou, Q.; Wang, J.; Huang, L.; Nie, W. H.; Wang, J. H.; Liu, Y.; Zhao, X. Y. et al. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes (англ.) // BioMed Central[англ.] : journal. — 2008. — Vol. 9, no. 6. — P. R98. — doi:10.1186/gb-2008-9-6-r98. — PMID18554412. — PMC2481430.
Laurence Freeman, Conrad Stephen Brimacombe, Eran Elhaik. aYChr-DB: a database of ancient human Y haplogroups // NAR Genomics and Bioinformatics, Volume 2, Issue 4, December 2020, lqaa081. Published: 09 October 2020