Серин (симбол: Ser или S)[2][3] — α-аминокиселина која се користи во биосинтезата на белковините. Содржи α-аминогрупа (која е во протонираниот облик −NH+ 3 во биолошки услови), карбоксилна група (која е во депротонираниот облик −COO− во биолошки услови) и страничен ланец кој се состои од хидроксиметилна група, што значи дека се класификува како поларна аминокиселина. Може да се синтетизира во човечкото тело под нормални физиолошки околности, што ја прави неесенцијална аминокиселина. Кодирана е од кодоните UCU, UCC, UCA, UCG, AGU и AGC.
Застапеност
Ова соединение е едно од природно застапените протеиногени аминокиселини. Само L-стереоизомерот се јавува природно во белковините. Не се смета за неопходно во човековата исхрана бидејќи во телото се синтетизира од други метаболити како глицинот. Серинот за првпат е добиен од белковина на свила од страна на Емил Крамер во 1865 г.[4] Името му е изведено од латинскиот збор свила — sericum. Структурата на серинот е утврдена во 1902 г.[5][6] Меѓу храните богати со L-серин се јајцата, едамамето, јагнешкото, џигерот, свинското, лососот, сардините, морската трева и тофуто.[7][8]
Биосинтеза
Биосинтезата на серинот почнува со оксидација на 3-фосфоглицерат (меѓупроизвод од гликолиза) во 3-фосфохидроксипируват и NADH под дејство на фосфоглицерат дехидрогеназа (EC1.1.1.95). Редуктивната аминација (трансаминација) на овој кетон од фосфоферин трансаминаза (EC2.6.1.52) дава 3-фосфоферин (O-фосфосерин) кој се хидролизира во серин под дејство на фосфосерин фосфатаза (EC3.1.3.3).[9][10]
Кај бактериите како E. coli овие ензими се кодирани од гените serA (EC 1.1.1.95), serC (EC 2.6.1.52) и serB (EC 3.1.3.3).[11]
Глицинска биосинтеза: Серин хидроксиметилтрансферазата (SHMT = серин трансхидроксиметилаза) исто така ги катализира повратните претворања на L-серин во глицин (ретроалдолно цепење) и 5,6,7,8-тетрахидрофолат во 5,10-метилентетрахидрофолат (mTHF) (хидролиза).[12] SHMT е ензим зависен од пиридоксал фосфат (PLP). Глицинот може да се образува и од CO2, NH+ 4 и mTHF во реакција катализирана од глицинска синтаза.[9]
D-серинот, синтетизиран во невроните со серинска рацемаза од L-серинот (неговиот енантиомер), служи како невромодулатор со коактивирање на NMDA-рецепторите, овозможувајќи им да се отворат ако тогаш врзат и глутамат. D-серинот е моќен агонист во глицинското место (NR1) на глумаматниот рецептор од NMDA-тип (NMDAR). За да се отвори рецепторот, глутаматот и глицинот или D-серинот мора да се сврзат со него; покрај тоа, не смее да има врзан блокатор на пори (на пр. Mg2+ или Zn2+).[15] D-серинот всушност е помоќен агонист во глицинското место врз NMDAR отколку самиот глицин.[16][17]
До релативно неодамна се сметало дека D-серинот го има само во бактерии. Набргу по откривањето на D-аспартатот, тој е пронајден и кај човекот како втората D-аминокиселина со природно присуство во човечкото тело и има улога на сигнална молекула во мозокот. Ако D-аминокиселините биле откриени кај човекот порано, глицинското место на NMDA-рецепторот веројатно ќе го носел името D-серинско место.[18] Освен во централниот нервен систем, D-серинот има сигнална улога во перифералните ткива на органи како ’рскавицата,[19] бубрегот[20] и пештерестото тело.[21]
Клиничка значајност
Пореметувањата од недостаток не серин се ретки мани во биосинтезата на аминокиселината L-серин. Досега се познати три:
недостаток од 3-фосфоглицерат дехидрогеназа
недостаток од 3-фосфосерин фосфатаза
недостаток од фосфосерин аминотрансфераза
Овие ензимски мани водат до тешки невролошки симптоми како вродена микроцефалија и тешка психомоторна заостанатост, па дури и нескротливи епилептични напади. Овие симптоми во различна мера се отстрануваат или ублажуваат со L-серин, понекогаш заедно со глицин.[22][23]
Успехот на лекувањето е разнолик, а долгорочниот фунцкионален исход е непознат. Постои регистар на пациенти кои се проучуваат за да се утврди заднината на болеста и начинот на можно лекување.
Освен попречувањето на биосинтезата на серинот, може да се попречи и неговиот транспорт. Еден пример е спастичната квадриплегија, тенкото мозолесто тело и прогресивната микроцефалија, болест предизвикана од мутации кои влијаат врз работата на неутралниот аминокиселински транспортер A.
D-серинот се проучува кај глодачите како потенцијален лек за шизофренија.[24] Опишан е и како потенцијален биопоказател за рана дијагноза на Алцхајмеровата болест поради неговата релативно висока во ’рбетномозочната течност кај варојатните пациенти.[25]
Се теоретизира дека D-серинот е потенцијален лек за невросетилни слушни пореметувања како губењето на слухот и тинитот.[26]
↑„Nomenclature and symbolism for amino acids and peptides (IUPAC-IUB Recommendations 1983)“, Pure Appl. Chem., 56 (5): 595–624, 1984, doi:10.1351/pac198456050595.
↑Cramer, Emil (1865). „Ueber die Bestandtheile der Seide“ [On the constituents of silk]. Journal für praktische Chemie. 96: 76–98. Serine is named on p. 93: "Ich werde den in Frage stehenden Körper unter dem Namen Serin beschreiben." (Ќе го опишам телото [т.е. материјата] по име „серин“.)
↑Lehninger, Albert L.; Nelson, David L.; Cox, Michael M. (2000). Principles of Biochemistry (3. изд.). New York: W. H. Freeman. ISBN1-57259-153-6. Занемарен непознатиот параметар |name-list-style= (help)
↑Karlheinz Drauz, Ian Grayson, Axel Kleemann, Hans-Peter Krimmer, Wolfgang Leuchtenberger, Christoph Weckbecker (2006), Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a02_057.pub2CS1-одржување: повеќе имиња: список на автори (link)
↑Liu Y, Hill RH, Arhem P, von Euler G (2001). „NMDA and glycine regulate the affinity of the Mg2+-block site in NR1-1a/NR2A NMDA receptor channels expressed in Xenopus oocytes“. Life Sciences. 68 (16): 1817–1826. doi:10.1016/S0024-3205(01)00975-4. PMID11292060.
↑MacKay, Mary-Anne B.; Kravtsenyuk, Maryana; Thomas, Rejish; Mitchell, Nicholas D.; Dursun, Serdar M.; Baker, Glen B. (6 февруари 2019). „D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression?“. Frontiers in Psychiatry. 10: 25. doi:10.3389/fpsyt.2019.00025. ISSN1664-0640. PMC6372501. PMID30787885. D-Serine is more potent than glycine as a coagonist at the NMDA receptor, has a regional distribution in the brain that is similar to that of NMDA receptors and appears to be more closely associated with synaptic NMDA receptors than glycine (which is more closely associated with non-synaptic NMDA receptors).
↑Takarada T, Hinoi E, Takahata Y, Yoneda Y (мај 2008). „Serine racemase suppresses chondrogenic differentiation in cartilage in a Sox9-dependent manner“. Journal of Cellular Physiology. 215 (2): 320–328. doi:10.1002/jcp.21310. PMID17929246. S2CID45669104.
↑Ma MC, Huang HS, Chen YS, Lee SH (ноември 2008). „Mechanosensitive N-methyl-D-aspartate receptors contribute to sensory activation in the rat renal pelvis“. Hypertension. 52 (5): 938–944. doi:10.1161/HYPERTENSIONAHA.108.114116. PMID18809793.
↑Ghasemi M, Rezania F, Lewin J, Moore KP, Mani AR (јуни 2010). „D-Serine modulates neurogenic relaxation in rat corpus cavernosum“. Biochemical Pharmacology. 79 (12): 1791–1796. doi:10.1016/j.bcp.2010.02.007. PMID20170643.
↑Tabatabaie L; Klomp LW; Berger R; de Koning TJ (март 2010). „L-Serine synthesis in the central nervous system: a review on serine deficiency disorders“. Mol Genet Metab. 99 (3): 256–262. doi:10.1016/j.ymgme.2009.10.012. PMID19963421.