0(零, 영)은 -1보다 크고 1보다 작은 정수이며,[1] 또한 수를 표기하기 위한 숫자이기도 하다.[2] 수로서의 0은 덧셈과 뺄셈에 대한 항등원[3]이며, 수직선과 좌표계에서 원점이 된다.[4] 음의 값이 없는 양(量)을 나타낼 경우에 ‘0’은 ‘무(無)’와 같은 뜻으로 쓰이기도 한다.[a]
[5] 기원전 300년 무렵 바빌로니아의 수학자들은 계산의 편의를 위해서 0을 사용하기 시작하였다.[6] 876년 인도에서 만들어진 비문에 0을 나타내는 숫자가 최초로 등장하였다. 인도에서는 0의 개념을 훨씬 이전부터 계산에 사용하고 있었다.[2]
한편 고대 그리스에서는 0을 숫자로 도입하는 것을 받아들이지 않았는데 그들은 "어떻게 없는 것을 나타낼 수 있단 말인가?"하고 반문하였다.[7][b]
십진법의 확립과 아라비아 숫자가 널리 받아들여지면서 0의 표기가 확립되었다.[8] 고대의 여러 문화에서 이미 음수를 사용하고 있었고, 《구장산술》에서도 음의 값을 갖는 문제가 제시되어 있으므로 이들 역시 0의 존재를 알고 있었다고 볼 수 있다. 그러나, 인도에서 비롯된 아라비아 숫자와 0의 사용을 중요하게 여기는 까닭은 십진법의 도입과 관련이 되어 있기 때문이다. 십진법에서 0을 사용하지 않으면 101과 11을 명확히 구분하여 나타내기 어렵다.[9]
즉, 같은 숫자라 할 지라도 놓인 자리에 따라 의미하는 값이 다르다. 0은 십진법에서 자릿수를 표시하는 중요한 역할을 한다.
수학
0은 1 이전에 등장하는 정수이다. 0은 짝수인데, 2로 나누어 떨어지기 때문이다. 0은 음수도 양수도 아니거나, 음수인 동시에 양수인 것으로 해석할 수 있다. 자연수의 정의에 0을 포함하도록 할 수 있는데, 이때 0은 양수가 아닌 유일한 자연수 또는 가장 작은 자연수가 된다. 0은 크기나 양 따위가 존재하지 않는 것을 세기 위한 수이다. 많은 문화에서 0의 개념은 음수 개념을 채택하기 이전에 발견되었다.
값 또는 수로써의 0은 위치 기수법에서 사용하는 숫자 0과 다르다. 위치 기수법에서 앞쪽 자리 숫자들은 큰 가중치를 가지고, 숫자 0은 위치를 정확하게 나타내기 위해 추가된다. 수 02의 예시와 같이, 숫자 0의 사용은 필수적이지 않을 수 있다.
기초 대수
0은 가장 작은 음이 아닌 정수이다. 0의 다음 자연수는 1이고, 0은 어떤 자연수의 다음 수가 아니다. 0을 자연수에 포함할 수도, 포함하지 않을 수도 있지만, 0이 정수라는 사실에는 영향을 주지 않는다. 따라서 0은 유리수, 실수, 복소수 등에 포함된다.
0은 음수도 양수도 아니고, 주로 수직선의 중심에 있는 수로 표현된다. 0은 소수도 합성수도 아니다. 0은 무한히 많은 약수를 가지므로 소수가 아니고, 소수의 곱으로 표현할 수 없으므로 합성수가 아니다. (단 0의 제곱도 0, 0의 모든 제곱근도 0이다.)
다음은 0에 관한 기초적인 사실들이다. 이는 따로 언급하지 않는 한 모든 실수 또는 복소수 에 대해 성립한다.
나눗셈: 가 0이 아닌 경우, 이다. 0은 곱셈 역원을 가지지 않으므로 은 정의되지 않는다. (0으로 나누기)
거듭제곱: 가 0이 아닌 경우, 이다. 가 0인 경우, 문맥에 따라 정의하거나 정의하지 않을 수 있다. 가 양의 실수인 경우, 이다.
의 극한을 구할 때, 분모와 분자에 각각 극한 연산자 을 취한 결과로 이 나타날 수 있고, 이를 부정형이라고 한다. 이는 극한이 존재하지 않음을 의미하지는 않는다. 만약 극한이 존재한다면 로피탈의 정리와 같이 다른 방법을 사용하여 극한을 구할 수도 있기 때문이다.
0개의 수의 합은 0이고, 0개의 수의 곱은 1이다. 빈 곱셈의 특수한 예시로, 계승 (수학)은 1과 같다.
수학 분야에서의 0
집합론에서, 0은 공집합의 크기이다. 즉, 사과를 가지고 있지 않은 것은 사과를 0개 가지고 있는 것과 같다. 집합론의 몇몇 공리적 개발에서, 0은 공집합으로 "정의된다". 이 정의에서, 공집합은 원소가 없는 집합의 폰 노이만 기수 할당이 된다. 기수 함수가 공집합에 적용되었을 때 결과는 공집합이고, 따라서 이에 0개의 원소를 할당한다.
정의역 위의 영함수(zero function)는 오직 0만을 값으로 가지는 상수 함수이다. 영함수는 유일하게 홀함수이며 짝함수인 함수이다. 영함수의 예시로는 범주론에서의 영사상과 비가역 정사각 행렬들의 집합 위의 행렬식 등이 있다.
여러 수학 분야에는 또는 의 성질을 일반화하는 영원(zero element)가 존재한다.
스포츠
야구에서 투수의 평균자책점이 0이면 모든 출전 경기에서 자책점을 내주지 않았다는 뜻이다. 아직 지구 역사상 평균자책점이 0인 투수는 없다. (투수가 항상 자책점만 내 줬을 경우 전광판에서는 투수의 평균자책점을 편의상 0으로 표기한다.) 반대로 타자의 타율이 0이라면 안타수가 0이라는 것을 뜻한다.