姿勢制御(しせいせいぎょ、英語: Attitude control)とは姿勢を制御すること。姿勢とはなんらかの物体がいかなる方向を向いているか、ということであり、一般にベクトルの組[1]などで表される。ロボットなどでも多用される語だが、以下ではもっぱら宇宙機のそれについて説明する。
宇宙機の場合、観測機器を観測対象に向けたり、通信アンテナを正しい方向へ向けたり、軌道制御時の推進方向を精密に保つために、衛星や船体の全体の向きを制御する必要がある。また有人宇宙活動では人間の船内・船外活動に支障をきたさないような制御が必要となる。
次のような制御ループによって姿勢制御が行われる。
航空機の姿勢は、3つの方向で安定する。上下に走る軸を中心に、ヨーイングは機首を左または右に動かす。翼から翼へと走る軸を中心に、ピッチは機首を上下に動かす。横転、機首から尾まで伸びる軸を中心に回転する。昇降舵(水平尾翼のフラップを動かす)はピッチを生み出し、垂直尾翼の舵はヨーを生み出し、補助翼(反対方向に動く翼のフラップ)はロールを生み出す。
宇宙機の姿勢制御には次のような方式がある。
スピン安定方式は、主な姿勢制御を1軸方向で機体を回転させることでジャイロ効果(ジャイロ剛性)によりぶれを防ぐ方式である。機体全体を1軸で回転させる「単一スピン安定方式」が基本であるが、アンテナやセンサなどを回転させたくない用途では、宇宙機本体とは逆回転させることで実質は回転させない「二重スピン安定方式」もある。いずれも潮汐力安定化のような方法で、残る2軸を安定化させることが一般的である。
3軸安定方式は直交する3つの軸に対して安定させる方式である。
3軸安定方式でもバイアスモーメンタム方式は、1軸方向のみ大きなモーメンタム・ホイールを内蔵し高速回転させることで、機体全体を回転させることなく1軸でのジャイロ剛性を得る。この方式では残る2軸、または3軸全ては別の姿勢制御が必要になる。
ゼロモーメンタム方式は3軸、または冗長性を得るために4軸といった方向のリアクション・ホイールを内蔵することで、姿勢制御を行う[2]。
制御プログラムは、センサ類のデータから目標姿勢に必要なトルクを求め、アクチュエータを制御する。このアルゴリズムは、単純なフィードバック・ループ制御からフィードフォワードループ制御、複雑な非線型制御まで様々である。