を満たすならば、組 (S, •, e) をモノイドという。まぎれの虞のない場合、対 (S, •) あるいは単に S のみでも表す。
二項演算の結果 a • b を a と b の積[注釈 1]と呼ぶ。手短に述べれば、モノイドとは単位元を持つ半群のことである。モノイドに各元の可逆性を課せば、群が得られる。逆に任意の群はモノイドである。
二項演算の記号は省略されることが多く、たとえば先ほどの公理に現れる等式は (ab)c = a(bc), ea = ae = a と書かれる。本項でも明示する理由がない限り二項演算の記号を省略する。
モノイドの構造
部分モノイド
モノイド M の部分集合 N が M の部分モノイド(submonoid) とは、M の単位元を含み、閉性質: x, y ∈ N ならば xy ∈ N となるようなものをいう。これは M のモノイド演算の制限 •|N: N × N → M の像が im(•|N) ⊂ N を満たすということであり、従って •|N は N 上の二項演算を定め、部分モノイド N は明らかにそれ自身が一つのモノイドとなる。
モノイドの生成
部分集合 S がモノイド M の生成系(generator) であるとは M の任意の元が S の元だけから二項演算を繰り返して得られることをいう(生成系に属する元を生成元という)。モノイド M がその部分集合 S で生成されるとき M = ⟨S⟩ などと書く。
M の各元 x に対し x0 = 1M を M の単位元とする規約を設けるならば、⟨S⟩ における S の元の冪が零となることも許し、⟨S⟩ は S を含む最小の部分モノイドを表す[注釈 2]。
M が有限個の元からなる生成系をもつとき、有限生成(finitely generated) あるいは有限型(finite type) であるという。特に、M のただ一つの元 f で生成されるモノイド ⟨f⟩ は単項生成モノイドあるいは巡回モノイド(cyclic monoid) と呼び、集合としては f の冪全体の成す集合 {f0, f1, …} に一致する。
可換モノイド
演算が可換であるようなモノイドは、可換モノイド(commutative monoid) という(稀にアーベルモノイド(abelian monoid) ともいう)。可換モノイドはしばしば二項演算の記号を "+" として加法的に書かれる。任意の可換モノイド M は
として定まる代数的前順序 "≤" を持つ。可換モノイド M の順序単位(order-unit)u ∈ M とは、M の各元 x に対して適当な正の整数 n をとれば x ≤ nu (右辺は n 個の u の和を表す)とできるようなものをいう。これは M が半順序可換群G の正錐である場合にもよく用いられ、この場合には u を G の順序単位と呼ぶ。
閉曲面の同相類の全体は連結和 "#" に関して可換モノイドを成す。単位元は通常の球面(2-球面)の属する同相類である。さらにいえば、トーラスの属する同相類 a と射影平面の属する同相類 b に対して、このモノイドの任意の元 c は c = na # mb の形に一意的に表される。ここで n は非負の整数で、m は 0, 1, 2 の何れか(実は 3b = a # b が成り立つ)である。
集合 S 上の自己写像(変換)S → S 全体の成す集合は、恒等写像を単位元とし写像の合成をモノイド演算としてモノイドになる。これを S 上の全変換モノイド (full transformation monoid) と呼ぶ。S が有限であることと S 上の全変換モノイドが有限であることは同値である。
二つのモノイド M, N に対して(より一般に、有限個のモノイド M1, …, Mk に対して、あるいは無限族 {Mi}i∈I に対して)、それらの直積集合M × N(あるいは M1 × ⋯ × Mk, ∏i∈IMi)もまたモノイドとなる。モノイド演算および単位元は、成分ごとの積および成分ごとの単位元の組として与えられる[2]。
与えられたモノイド M に対し、与えられた集合 S から M への写像の全体Map(S, M) は再びモノイドとなる。単位元は任意の元を M の単位元へ写す定値写像で、演算は M の積から導かれる点ごとの積で、それぞれ与えられる。これは S で添字付けられたモノイドの族 {M}i∈S の直積モノイドと本質的に同じものである。
商モノイド
モノイド (M, •, 1M) 上の合同関係(モノイド合同)∼ とは、モノイド構造と両立する(すなわち、a ∼ b かつ c ∼ d ならば ac ∼ bd を満たす)同値関係を言う。モノイド M のモノイド合同 ∼ による剰余モノイドあるいは商モノイドは、各元 x ∈ M の属する同値類を [x] と書くとき、商集合 M/∼ に
で定めれば、P(M) は自明モノイド {e} を単位元とするモノイドとなる。同じ方法で、群 G の冪集合は群の部分集合の積(英語版)に関するモノイドとなる。
性質
モノイドにおいて、元 x の自然数冪を
x1 := x,
xn := x • … • x (n 個の x の積、n > 1)
と定義することができる。このとき、指数法則xn+p = xn • xp の成立は明らかである。定義から直接従うこととして、単位元 e が一意に存在するので、任意の x に対して x0 := e と定義すると、指数法則は任意の非負整数冪に対してなお有効である。
モノイドにおいては、可逆元(あるいは単元)の概念を定義することができる。モノイドの元 x が可逆であるとは xy = e かつ yx = e を満たす元 y が存在するときにいう。y は x の逆元と呼ばれる。y および z が x の逆元ならば、結合律により y = (zx)y = z(xy) = z となるから、逆元は存在すればただひとつである[3]。
元 x が逆元 y を持つ場合には、x の負の整数冪を x−1 := y および x−n := y • … • y(n 個の y の積、n > 1)と定義することができて、先ほどの指数法則が n, p を任意の整数として成立する。このことが x の逆元がふつう x−1 と書かれることの理由である。モノイド M の単元の全体は M の演算 • に関して単元群と呼ばれる群を成す。この意味で任意のモノイドは必ず少なくとも一つの群を含む(ただし、それが単位元のみからなる自明な群である場合もある)。
しかしながら、任意のモノイドが必ず何らかの群に含まれるとは限らない。例えば、b が単位元ではない場合にも a • b = a を満たすような二つの元 a, b をとることができるモノイドというものを矛盾なく考えることができるが、このようなモノイドを群に埋め込むことはできない。なぜなら、埋め込んだ群において必ず存在する a の逆元を両辺に掛けることにより b = e が導かれ、b が単位元でないことに矛盾するからである。モノイド (M, •) が消約律(cancellation property) を満たす、あるいは消約的(cancellative) であるとは
M の任意の元 a, b, c に対し、a • b = a • c が成り立つならば、常に b = c を帰結することができる
消約的モノイドが有限ならば、実は群になる。実際、モノイドの元 x を一つ選べば、有限性より適当な m > n > 0 をとって xn = xm とすることができるが、これは消約律により xm−n = e(e はモノイドの単位元)となり、xm−n−1 が x の逆元となる。
巡回モノイドの位数が有限な n であるとき、0 ≤ k ≤ n − 1 をみたす適当な k に対して fn = fk が成り立つ。実は、そのような k を定めるごとに位数 n の相異なるモノイドが得られ、逆に任意の巡回モノイドはそれらのモノイドのうちの何れか一つに同型となる。特に k = 0 の場合は、全ての fi が逆元を持ち、(ただひとつの位数 n の)巡回群を定める。このとき f は巡回置換として
となる M の元 a−1 をただひとつ持つとき、M を逆モノイド(inverse monoid) あるいは山田モノイドという[注釈 5]。逆モノイドが消約的ならばそれは群を成す。
モノイド作用と作用素モノイド
(M, •) をモノイドとする。集合 X への(左)M-作用(M-act) あるいは M による左作用とは、集合 X と外部演算 .: M × X → X の組で、外部演算 "." が
X の任意の元 x に対して、 e.x = x が成り立つ。
M の任意の元 a, b と X の任意の元 x に対して、a.(b.x) = (a • b).x が成り立つ。
という二つの条件を満たす(ただし e は M の単位元)という意味でモノイド構造と両立することをいう。これは群作用のモノイド論における類似物である。右 M-作用も同様に定義される。ある作用に関するモノイドは作用素モノイドとも呼ばれる。重要な例として、オートマトンに現れる状態遷移系が挙げられる。ある集合上の自分自身への写像から成る半群(変換半群)は、恒等変換を付け加えることで作用素モノイドにすることができる。
M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories with Applications to Wreath Products and Graphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3110152487.