その一つがクレン古細菌に近縁なタウム古細菌こそが真核生物の起源であるとするものであり[1][3][4][5][6]、クレン古細菌とタウム古細菌の双方を含む上門としてTACK(英語版)が提唱された。このTACKが真核生物の起源とする説を「TACK説(TACK hypothesis)[7]」という。その後熱水噴出孔のメタゲノム解析の結果として、TACKの姉妹群でより真核生物に近い上門としてアスガルド古細菌が提唱された[8]。また、「生命の輪 (Ring of life)[9]」も広い意味でエオサイト説の変形といえる。
なお、現在真核生物に最も近い古細菌はクレン古細菌(=エオサイト)ではなく、アスガルド古細菌と考えられ、厳密にはエオサイト説とは言えなくなってきている。そのため二分岐説や Eocyte like hypothesis/scenarios と呼び換えることもある。ただし、2008年ごろまでは後にアスガルド古細菌と呼ばれることになるDSAG系統/MBG-B系統もクレン古細菌に含まれていたことに留意しなければならない。また、エオサイト説の提唱者であるジェームズ・レイクは、エオサイトはクレン古細菌よりももっと広い範囲(少なくともTACK以上)を指していると述べている[10]。
^Lake, J. A.; Henderson, E.; Oakes, M.; Clark, M. W. (1984). “Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes”. Proceedings of the National Academy of Sciences of the United States of America81 (12): 3786–3790.
^ abLake, J. A. (1988). “Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences"”. Nature331 (6152): 184–186.
^ abcWoese, C.R.; Kandler, O.; Wheelis, M.L. (1990). “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”. Proc Natl Acad Sci U S A87 (12): 4576–4579.
^ abcRivera, M. C.; Lake, J. A. (1992). “Evidence that eukaryotes and eocyte prokaryotes are immediate relatives”. Science257 (5066): 74–76.
^Lake, J. (1989). “Origin of the eukaryotic nucleus: eukaryotes and eocytes are genotypically related”. Can. J. Microbiol.35: 109-118.
^Martin, W.; Muller, M. (1998). “The hydrogen hypothesis for the first eukaryote”. Nature392: 37–41.
^Cavalier-Smith, T. (2002). “The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification”. Int. J. Syst. Evol. Microbiol.52 (Pt 1): 7–76.
^Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., Bork, P. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science. 311, 1283-7.
^Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. & Koonin, E. V. (2008) The Deep Archaeal Roots of Eukaryotes. Mol. Biol. Evol. 25, 1619-1630.
^Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., Embley, T. M. (2008). "The archaebacterial origin of eukaryotes". Proceedings of the National Academy of Sciences 105 (51): 20356–20361.
^Lindås, A.C., Karlsson, E.A., Lindgren, M.T., Ettema, T.J., Bernander, R. (2008). “A unique cell division machinery in the Archaea”. Proc Natl Acad Sci U S A 105 (45): 18942-6.
^Cann, I.K. (2008). “Cell sorting protein homologs reveal an unusual diversity in archaeal cell division”. Proc Natl Acad Sci U S A 105 (45): 18653-4.
^Brochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P. (March 2008). “Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota”. Nat. Rev. Microbiol. 6 (3): 245–52.
^Nunoura, T., Takaki, Y., Kakuta, J., Nishi, S., Sugahara, J., Kazama, H., Chee, G.J., Hattori, M., Kanai, A., Atomi, H., Takai, K., Takami, H. (2010). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.”Nucleic Acids Res. 39 (8): 3204-23.
^Ettema, T.J. Lindas, A. Bernander, R. (2011). "An actin-based cytoskeleton in archaea". Molecular Microbiology 80 (4): 1052–61.
^Yutin, N. & Koonin, E. V. (2012)"Archaeal origin of tubulin." Biol. Direct 7:10.
^Kelly, S.; Wickstead, B.; Gull, K. (2011). “Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes”. Proc Biol Sci.278 (1708): 1009-1018.
^Spang, Anja; Saw, Jimmy H.; Jørgensen, Steffen L.; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E.; van Eijk, Roel; Schleper, Christa et al. (2015). “Complex archaea that bridge the gap between prokaryotes and eukaryotes”. Nature. doi:10.1038/nature14447. ISSN0028-0836.
^G.P. Fournier et al. (2018). “A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree”. Front. Microbiol.9. doi:10.3389/fmicb.2018.01896.
^ abMargulis, L.; Chapman, M.; Guerrero, R.; Hall, J. (2006). “The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon”. PNAS103 (35): 13080-13085. doi:10.1073/pnas.0604985103.
^Huber, H., Burggraf, S., Mayer, T., Wyschkony, I., Rachel, R., Stetter, K.O. (2000) "Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov." Int J Syst Evol Microbiol 50: 2093–100.
^Küper, U., et al. (2010). “Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis”. Proc. Natl. Acad. Sci. U S A.107 (7): 3152-6. doi:10.1073/pnas.0911711107.
^Heimerl, T., et al. (2017). “A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans”. Front. Microbiol.8. doi:10.3389/fmicb.2017.01072.
^Hartman, H., Favaretto, P., Smith, T. F. (2006) The archaeal origins of the eukaryotic translational system. Archaea 2, 1-9.
^Cavalier-Smith, T. (2002) "The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification." Int J Syst Evol Microbiol 52 (Pt 1): 7–76.
^Livingstone Bell, Philip John (2001). "Viral Eukaryogenesis: Was the Ancestor of the Nucleus a Complex DNA Virus ?". Journal of Molecular Evolution 53 (3): 251–6.