^ abBrochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P. (March 2008). “Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota”. Nat. Rev. Microbiol.6 (3): 245–52. doi:10.1038/nrmicro1852. PMID18274537.
^Kelly S, Wickstead B, Gull K. (2011). “Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes.”. Proc Biol Sci.278 (1708): 1009-18. doi:10.1098/rspb.2010.1427.
^Lionel Guy, Thijs J.G. Ettema (2011). “The archaeal ‘TACK’ superphylum and the origin of eukaryotes”. Trends in Microbiology19 (12): 580-587. doi:10.1016/j.tim.2011.09.002.
^Yutin, N. & Koonin, E. V. 2012 Archaeal origin of tubulin. Biol. Direct. 7, 10. (doi:10.1186/1745-6150-7-10)
^Lionel Guy, Thijs J.G. Ettema (2011). “The archaeal ‘TACK’ superphylum and the origin of eukaryotes”. Trends in Microbiology19 (12): 580-587.
^Preston CM, Wu KY, Molinski TF, De Long EF (1996). “A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov”. Proc. Natl. Acad. Sci. USA93: 6241–6246. doi:10.1073/pnas.93.13.6241. PMID8692799.
^Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005). “Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437: 543–546. PMID16177789.
^ abHallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006). “Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum”. Proc. Natl. Acad. Sci. U.S.A.103 (48): 18296–18301. doi:10.1073/pnas.0608549103. PMID17114289.
^Walker, C.B. et al. (2010). “Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea”. Proc. Natl. Acad. Sci. U.S.A.107 (19): 8818-23. doi:10.1073/pnas.0913533107. PMID20421470.
^ abcStieglmeier, M., et al. (2014). “Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.64: 2738-52. doi:10.1099/ijs.0.063172-0. PMID24907263.
^ abcdefghiQin, W., et al. (2017). “Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.67 (12): 5067-5079. doi:10.1099/ijsem.0.002416. PMID29034851.
^Karner, M. B., DeLong, E. F., Karl, D. M. (2001). “Archaeal dominance in the mesopelagic zone of the Pacific Ocean”. Nature409 (6819): 507–10. doi:10.1038/35054051. PMID11206545.
^ abJung, M.Y., et al. (2018). “Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil”. Int. J. Syst. Evol. Microbiol.: 5067-5079. doi:10.1099/ijsem.0.002926. PMID30124400.
^de la Torre, J.R., et al. (2008). “Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol”. Environ. Microbiol.10 (3): 810-8. doi:10.1111/j.1462-2920.2007.01506.x. PMID18205821.
^Daebeler, A., et al. (2018). “Cultivation and Genomic Analysis of "Candidatus Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland”. Front. Microbiol.9 (193). doi:10.3389/fmicb.2018.00193. PMID29434576.
^Abby, S. S., et al. (2018). “Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome”. Front. Microbiol.9 (28). doi:10.3389/fmicb.2018.00028. PMID18205821.
^Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., Schleper, C. (2006). “Archaea predominate among ammonia-oxidizing prokaryotes in soils”. Nature442 (7104): 806–9. doi:10.1038/nature04983. PMID16915287.
^Wuchter, C., Abbas, B., Coolen, M. J., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G. J., Middelburg, J. J., Schouten, S., Sinninghe Damsté, J. S. (2006). “Archaeal nitrification in the ocean”. Proc Natl Acad Sci U S A103 (33): 12317–22. doi:10.1073/pnas.0600756103. PMID16894176.
^Doxey, A. C., et al. (2015). “Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production”. ISME J.9 (2): 461-71. doi:10.1038/ismej.2014.142. PMID25126756.
^F Muller, T Brissac, N Le Bris, H Felbeck, O Gros (2010). “First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat”. Environmental Microbiology12 (8): 2371–2383. doi:10.1111/j.1462-2920.2010.02309.x.
^Kato, S., et al. (2019). “Isolation and characterization of a thermophilic sulfur- and iron-reducing thaumarchaeote from a terrestrial acidic hot spring”. ISME J.. doi:10.1038/s41396-019-0447-3. PMID31171857.
^Shingo, Kato, et al. (2021). “Conexivisphaera calida gen. nov., sp. nov., a thermophilic sulfur- and iron-reducing archaeon, and proposal of Conexivisphaeraceae fam. nov., Conexivisphaerales ord. nov., and Conexivisphaeria class. nov. in the phylum Thaumarchaeota”. Int J Syst Evol Microbiol
.7 (1). doi:10.1099/ijsem.0.004595.
^Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H. (2010). “Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.”. Nucleic Acids Res.39 (8): 3204-23. PMID21169198.
^ abLindås, A.C., Karlsson, E.A., Lindgren, M.T., Ettema, T.J., Bernander, R. (2008). “A unique cell division machinery in the Archaea”. Proc Natl Acad Sci U S A105 (45): 18942-6. doi:10.1073/pnas.0809467105. PMID18987308.Cann, I.K. (2008). “Cell sorting protein homologs reveal an unusual diversity in archaeal cell division”. Proc Natl Acad Sci U S A105 (45): 18653-4. doi:10.1073/pnas.0810505106. PMID19033202.
^Cubonova, L., Sandman, K., Hallam, S. J., Delong, E. F., Reeve, J. N. (2005). “Histones in crenarchaea”. Journal of Bacteriology187 (15): 5482–5485. doi:10.1128/JB.187.15.5482-5485.2005. PMID16030242.
^Brochier-Armanet, C., Gribaldo, S., Forterre, P. (2008). “A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya”. Biol. Direct3: 54. doi:10.1186/1745-6150-3-54. PMID19105819.
^Stieglmeier, M., et al. (2014). “Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.64: 2738-52. doi:10.1099/ijs.0.063172-0. PMID24907263.
^Qin, W., et al. (2017). “Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota”. Int. J. Syst. Evol. Microbiol.67 (12): 5067-5079. doi:10.1099/ijsem.0.002416. PMID29034851.
^Jung, M.Y., et al. (2018). “Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil”. Int. J. Syst. Evol. Microbiol.: 3084-3095. doi:10.1099/ijsem.0.002926. PMID30124400.
^Shingo, Kato, et al. (2021). “Conexivisphaera calida gen. nov., sp. nov., a thermophilic sulfur- and iron-reducing archaeon, and proposal of Conexivisphaeraceae fam. nov., Conexivisphaerales ord. nov., and Conexivisphaeria class. nov. in the phylum Thaumarchaeota”. Int J Syst Evol Microbiol.7 (1). doi:10.1099/ijsem.0.004595.