A transferencia horizontal de xenes, tamén chamada transferencia lateral de xenes ou transferencia xenética horizontal (abreviada THX ou HGT polas súas siglas en inglés) é unha transferencia de xenes entre organismos dun modo distinto á reprodución tradicional, que pode darse entre individuos da mesma especie ou de especies distintas. O seu nome de transferencia horizontal ou lateral de xenes contraponse a transferencia vertical, que é a transmisión de xenes desde a xeración parental á descendencia por medio da reprodución sexual ou asexual. A transferencia horizontal de xenes foi un importante factor na evolución de moitos organismos, desde bacterias a eucariotas superiores.
A transferencia horizontal de xenes é a razón principal de que se produza a resistencia a antibióticos bacteriana,[1][2][3][4] e xoga un importante papel na activación de bacterias que poden degradar novos compostos como os pesticidas fabricados polo ser humano[5] e na evolución, mantemento e transmisión da virulencia nos microorganismos.[6] Esta transferencia horizontal de xenes con frecuencia implica a bacteriófagos temperados e plásmidos.[7] Os xenes que son responsables da resistencia a antibióticos nunha especie de bacterias poden transferirse a outras especies bacterianas por medio de varios mecanismos (por exemplo, por medio de pilus F), o que dotará de xenes de resistencia a antibióticos ao receptor, o cal é unha ameaza médica coa que hai que tratar. Esta é a principal razón pola que os antibióticos non deben ser consumidos e administrados aos pacientes sen unha axeitada prescrición por parte dun médico.[8]
A maioría dos estudos en xenética enfocáronse á transferencia vertical, pero hai unha consciencia crecente de que a transferencia horizontal de xenes é un fenómeno moi significativo e quizais é, entre os organismos unicelulares, a forma dominante de transferencia xenética.[9][10]
A transferencia horizontal de xenes artificial é un tipo de técnica en enxeñaría xenética.
A transferencia horizontal de xenes foi descrita por primeira vez en Seattle en 1951 nunha publicación que demostraba que a transferencia dun xene viral á bacteria Corynebacterium diphtheriae orixinaba unha cepa virulenta a partir dunha cepa que non o era,[11] o que tamén serviu para resolver o enigma da difteria (no que os pacientes podían infectarse coa bacteria pero non ter síntomas, pero despois ás veces esta transformábase de repente en virulenta),[12] e deu o primeiro exemplo da importancia dos ciclos lisoxénicos.[13] A transferencia de xenes foi descrita no Xapón en 1959 nunha publicación que demostraba a transferencia da resistencia a antibióticos entre diferentes especies de bacterias.[14][15] A metade da década de 1980, Syvanen[16] predixo que a transferencia lateral de xenes tivo unha grande importancia biolóxica, e estivo implicada en dar forma á historia evolutiva das especies desde o principio da aparición da vida sobre a Terra.
En palabras de Jain, Rivera e Lake (1999): "Cada vez máis, os estudos de xenes e xenomas indican que tivo lugar unha considerable transferencia horizontal de xenes entre os procariotas".[17] (ver tamén Lake e Rivera, 2007).[18] O fenómeno parece que foi moi significativo tamén entre os eucariotas unicelulares. Como sinaloron Bapteste et al. (2005), "evidencias adicionais suxiren que a transferencia de xenes podería tamén ser un importante mecanismo evolutivo na evolución dos protistas."[19]
Hai algunhas evidencias de que as plantas superiores e os animais tamén se viron afectadas por esta transferencia.[20] Richardson e Palmer (2007) afirmaron: "A transferencia horizontal de xenes (THX) xogou un papel principal na evolución das bacterias e é moi común en certos eucariotas unicelulares. Porén, a prevalencia e importancia da THX na evolución de eucariotas multicelulares permanece pouco clara."[21]
Debido á crecente cantidade de evidencias que suxiren a importancia deste fenómeno para a evolución (véxase máis abaixo) biólogos moleculares como Peter Gogarten consideraron a transferencia horizontal de xenes como "un novo paradigma para a bioloxía".[22]
O fenómeno pode ser un perigo agochado nas aplicacións da enxeñaría xenética, xa que podería permitir que ADN transxénico perigoso se espallase de especie a especie.[20]
Hai varios mecanismos para a transferencia horizontal de xenes:[23][24]
Os virus chamados mimivirus infectan amebas. Outros virus, chamados Sputnik (un virus satélite), tamén infectan amebas, pero non se poden reproducir a menos que un mimivirus infectase antes á mesma célula.[26] O coñecemento do xenoma de "Sputnik" serviu para unha mellor comprensión da súa bioloxía. Aínda que 13 dos seus xenes mostran poucas similitudes con calquera outro xene coñecido, tres deles están moi relacionados con xenes de mimivirus e mamavirus, e quizais foron canibalizados polos diminutos virus cando empaquetaban as súas partículas compoñentes nalgún momento da súa historia evolutiva. Isto suxire que o virus satélite podería realizar unha transferencia horizontal de xenes entre virus, en certo modo similar ao transporte de xenes feito por bacteriófagos entre as bacterias."[27]
A transferencia horizontal de xenes é común entre as bacterias, mesmo entre as que están moi pouco emparentadas. Este proceso crese que é unha causa significativa do incremento da resistencia aos fármacos[28] producida cando unha célula bacteriana adquiere resistencia e transfire rapidamente xenes de resistencia a moitas especies.[29][30] A transferencia horizontal de xenes tamén xoga un papel no espallamento de factores de virulencia, como exotoxinas e exoencimas, entre bacterias. Propuxéronse estratexias para combater certas infeccións bacterianas tomando como obxectivo factores de virulencia específicos e elementos xenéticos móbiles.[6]
"As comparacións de secuencias suxiren a transferencia horizontal recente de moitos xenes entre diversas especies mesmo a través das fronteiras entre os "dominios" filoxenéticos. Deste xeito, a determinación da historia filoxenética dunha especie non pode facerse conclusivamente determinando as árbores evolutivas por medio de xenes únicos".[31]
A enxeñaría xenética é esencialmente unha transferencia horizontal de xenes, aínda que con casetes de expresión sintéticos. O sistema transposón Bela dormente[47] (SB, Sleeping Beauty) foi desenvolvido como un axente de transferencia de xenes sintético que estaba baseado nas capacidades coñecidas dos transposóns Tc1/mariner de invadiren xenomas de especies extremadamente diversas.[48] O sistema SB utilizouse para introducir secuencias xenéticas nunha ampla variedade de xenomas animais.[49][50]
A transferencia horizontal de xenes é un factor potrencial de confusión á hora de inferir árbores filoxenéticas baseadas na secuencia dun xene.[51] Por exemplo, se tomamos dúas bacterias pouco emparentadas que intercambiaran un xene, a árbore filoxenética que as inclúa mostrará que están moi emparentadas porque ese xene é o mesmo aínda que a maioría dos outros xenes sexan distintos. Por esta razón o ideal é a miúdo usar outra información para inferir unha filoxenia máis segura como a presenza ou ausencia de xenes ou, máis comunmente, incluír un rango de xenes o máis amplo posible para a análise filoxenética.
Por exemplo, o xene máis común usado para construír as relacións filoxenéticas entre procariotas é o xene do ARNr 16S, xa que as súas secuencias tenden a estar conservadas entre membros situados a distancias filoxenéticas curtas, pero é o suficientemente variable como para que se poidan medir as diferenzas. Porén, en anos recentes argumentouse que os xenes de ARNr 16S poden tamén transferirse horizontalmente. Aínda que isto pode ser infrecuente, fai que a validez das árbores filoxenéticas construídas a partir dos xenes de ARNr 16S deba ser reavaliada.[52]
O biólogo Johann Peter Gogarten suxeriu que "a metáfora orixinal dunha árbore xa non cadra cos datos da recente investigación en xenomas" e, por tanto, "os biólogos deberían usar a metáfora dun mosaico para describir as diferentes historias combinadas en xenomas individuais e usar a metáfora dunha rede para visualizar o rico intercambio e efectos cooperativos da transferencia horizontal de xenes entre microbios."[22] Existen varios métodos para inferir esas redes filoxenéticas.
Usando marcadores filoxenéticos dun único xene, é difícil trazar a filoxenia dos organismos en presenza de transferencias horizontais de xenes. Combinar o modelo de coalescencia simple da cladoxénese cos eventos raros de transferencia horizontal de xenes suxire que non houbo un único antepasado común máis recente que contivese todos os xenes ancestrais que son compartidos entre os tres dominios da vida. Cada molécula contemporánea ten a súa propia historia e rastréase ata unha molécula indivudual cenancestral. Porén, estes devanceiros molecularess probablemente estaban presentes en diferentes organismos en tempos diferentes."[53]
Uprooting the Tree of Life de W. Ford Doolittle[54] é un artigo publicado en Scientific American en febreiro de 2000, que contén unha discusión sobre o último antepasado común universal e os problemas que xorden con ese concepto cando se considera a transferencia horizontal de xenes. O artigo cobre unha grande área, como a hipótese endosimbiótica para os eucariotas, o uso de pequenas subunidades de ARNr (SSU RNAr) como medida das distancias evolutivas (campo no que traballara Carl Woese cando formulou a primeira árbore da vida moderna no que se propuxo a existencia do dominio das Archaea) e outros tópicos relevantes. De feito, foi examinando ese novo terceiro dominio como se viu que a transferencia horizontal de xenes ía ser un asunto complicado. Por exemplo, Archaeoglobus fulgidus é citado no artigo como unha anomalía na súa árbore filoxenética baseada na codificación do encima HMGCoA redutase (o organismo en cuestión é unha arquea ben definida, con todos os lípidos celulares e maquinaria de transcrición xenética que se esperan nunha arquea, pero con xenes para a HMGCoA redutase que son de orixe bacteriana).[54]
O artigo continúa expoñendo que unha transferencia horizontal de xenes extensa implica que nunca houbo unha célula única que puidese denominarse o último antepasado común universal. Citan as palabras de Carl Woese, que dixo: "o antepasado non puido ser un organismo particular, unha soa liñaxe de organismos. Foi un conglomerado de células primitivas comunal, sen gran cohesión e diverso que evolucionou como unha unidade, e que finalmente se desenvolveu ata un estadio no que se fragmentou en varias comunidades distintas, que á súa vez se converteron nas tres liñas primarias de descendencia (bacteria, arquea e eucariotas)"[54]
Woese afirmou tamén: "En condicións de extrema transferencia horizontal de xenes, non hai unha "árbore" (de organismos). A evolución é basicamente reticulada."[55]
As formulacións anteriores foron despois contraditas por traballos posteriores. Por exemplo, no artigo A formal test of the theory of universal common ancestry publicado en Nature en maio de 2010, Douglas Theobald[56] argumenta que si houbo un último antepasado común universal a todas as formas de vida hoxe existentes e que a transferencia horizontal de xenes non nos impide inferir isto. En palabras de Theobald: "Entre un amplo rango de modelos biolóxicos que implican a ascendencia independente dos principais grupos taxonómicos, resultou que as probas de selección modelo apoian abrumadoramente ao antepasado común universal independentemente da presenza de transferencias horizontais de xenes e de eventos simbióticos de fusión. Estes resultados proporcionan unha poderosa evidencia estatística corroborando a monofilia de todas as formas de vida."[56]
Outros autores opinaron que o test de Theobald "non é suficiente para rexeitar a hipótese alternativa das orixes separadas da vida"[57] Despois Theobald insistiu en que os seus modelos estatísticos son os máis axeitados para distinguir entre esas hipóteses e que apoian a idea dun antepasado común universal.[58]
Exemplos de transferencias horizontais de xenes históricas das que hai evidencia son as dos seguintes xenes: