Read other articles:
Perusahaan Kereta Api Jepang TimurKantor pusat di Shinjuku, TokyoNama asli東日本旅客鉄道株式会社Nama latinHigashi-Nihon Ryokaku Tetsudō kabushiki gaishaJenisPublik (Kabushiki gaisha)Kode emiten TYO: 9020 Komponen Nikkei 225 Komponen TOPIX Large70 IndustriTransportasi relPendahuluKereta Api Nasional Jepang (JNR)Didirikan1 April 1987; 36 tahun lalu (1987-04-01) (privatisasi JNR)Kantorpusat2-2-2 Yoyogi, Shibuya, Tokyo, JepangWilayah operasiWilayah Kantō dan TōhokuPrefektur Nii...
Gemeentehuis, opgetrokken in 1905 (foto uit 2001) Het Gemeentehuis van Grimbergen met onderwijzerswoning en jongensschool werd gebouwd in 1905 en is een representatief voorbeeld van een vroeg-20ste-eeuws gemeentehuis met aansluitende onderwijzerswoning en gemeentelijke jongensschool. Dat op deze locatie deze drie afzonderlijke erfgoedelementen zijn bewaard gebleven is een zeldzaam gegeven[1]. Het geheel werd uitgewerkt door architect Henri Jacobs (1864-1935), gekend voor zijn ontwerpe...
Джон Сімсангл. John Sims Народився 13 жовтня 1749(1749-10-13)Кентербері, Кентербері-Сітіd, Кент[d], Кент, Англія, Королівство Велика БританіяПомер 26 лютого 1831(1831-02-26)[1] (81 рік)Доркінґd, Суррей, Англія, Сполучене КоролівствоМісце проживання АнгліяКраїна Сполучене Королівство ...
American lawyer (born 1975) For the Canadian curler, see Kristin Clarke. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (February 2022) (Learn how and when ...
彼女が成仏できない理由別名 カノブツジャンル テレビドラマ作 桑原亮子演出 堀内裕介新田真三監修 石川俊樹(漫画)出演者 森崎ウィン高城れに(ももいろクローバーZ)和田正人村上穂乃佳中島広稀白鳥玉季高橋努ブラザートム古舘寛治音楽 トクマルシューゴ王舟国・地域 日本言語 日本語製作制作統括 三鬼一希プロデューサー 増田靜雄撮影監督 深野岳志森田晃平...
Map of the results of the 2004 Great Yarmouth council election. Conservatives in blue and Labour in red. The 2004 Great Yarmouth Borough Council election took place on 10 June 2004 to elect members of Great Yarmouth Borough Council in Norfolk, England. The whole council was up for election with boundary changes since the last election in 2003 reducing the number of seats by 9.[1] The Conservative Party stayed in overall control of the council.[2] Election result Great Yarmouth...
ホーマン遷移軌道(ホーマンせんいきどう、英語: Hohmann transfer orbit) またはホーマン軌道(ホーマンきどう、英語: Hohmann orbit)とは、同一軌道面にある2つの円軌道の間で、軌道を変更するための遷移軌道である。ドイツのヴァルター・ホーマンが1925年に提案した。 概念 ホーマン遷移軌道(2)。軌道(1)から(3)、または逆に移動する。 宇宙力学 軌道力学 軌道要素近点...
Hamilton at San Diego Comic-Con, 2019 Linda Hamilton is an American actress. She is best known for her portrayals of Sarah Connor in the Terminator film franchise (1984–2019) and Catherine Chandler on the CBS television series Beauty and the Beast (1987–1989), for which she was nominated for two Golden Globes and an Emmy Award. She starred as Vicky Baxter in the horror film Children of the Corn (1984), Dr. Amy Franklin in the adventure film King Kong Lives (1986), and Mayor Rachel Wando i...
Czech composer (1854–1928) Janáček redirects here. For other people with the surname, see Janáček (surname). Janáček with his wife Zdenka, in 1881 Naše píseň (Our Song) Postludium for Organ Problems playing these files? See media help. Leoš Janáček (Czech pronunciation: [ˈlɛoʃ ˈjanaːtʃɛk] ⓘ,[1][2] 3 July 1854 – 12 August 1928) was a Czech composer, musical theorist, folklorist, publicist, and teacher. He was inspired by Moravian and other Slavi...
World Circuit Records est un label discographique britannique, établi à Londres au milieu des années 1980 et spécialisé dans la musique de Cuba et d'Afrique de l'Ouest. La ligne du label était d'être un soutien général pour les artistes qu'il produisait, prenant en charge l'ensemble des aspects de chaque production. Vingt ans plus tard, cette politique reste centrale dans le fonctionnement de World Circuit. Le label a célébré ses vingt ans en 2006 en sortant World Circuit presents...
Steve Theodorus McManaman Informasi pribadiNama lengkap Steven Theodorus McManamanTanggal lahir 11 Februari 1972 (umur 51)Tempat lahir Bootle, Merseyside, InggrisTinggi 1,83 m (6 ft 0 in)Posisi bermain Gelandang sayap (pensiun)Karier junior1988–1989 LiverpoolKarier senior*Tahun Tim Tampil (Gol) 1989–19991999–20032003–2005 LiverpoolReal MadridManchester City 274 (46)094 0(8)035 0(0) Tim nasional1991–19931994–2001 Inggris U 21Inggris 007 0(1)037 0(3) * Penampilan...
Dấu luyến Dấu luyến (tiếng Anh: slur) là một ký hiệu trong hệ thống ký hiệu nhạc phương Tây, có hình dạng một nét cong, biểu thị một cách thức biểu diễn nhóm các nốt nhạc có cao độ khác nhau.[1][2] Cần biểu diễn những nốt nhạc chịu tác động của dấu luyến một cách không bị chia cắt bởi sự ngắt âm.[3] Hình thức Dấu luyến xuất hiện trong các bản tổng phổ ho...
Ethnic minority Part of a series onEthnicity in Beijing Hui Koreans Uyghurs vte Stores near Futong station, a subway station in Wangjing, with Chinese, English and Korean trilingual signs Korean shop signs in Wangjing, Beijing in 2004 Beijing has a population of Koreans. According to 2019 estimates, total numer of population was 95,383 and there were about 36,660 South Korean people for business,16,783 South Korean students, and 41,940 Chaoxianzu (Joseonjok) (ethnic Koreans who are Chinese ci...
Emil BobuBobu (left) honored by Nicolae Ceaușescu on his 50th birthday, 1977Born(1927-02-22)22 February 1927Vârfu Câmpului, Botoșani County, Kingdom of RomaniaDied12 July 2014(2014-07-12) (aged 87)Bucharest, RomaniaOccupations Lathe operator Military prosecutor Politician OrganizationRomanian Communist PartyCriminal chargeAggravated manslaughterCriminal penalty10 yearsCriminal statusParoledSpouseMaria Bobu Emil Bobu (22 February 1927 – 12 July 2014) was a Romanian Communist ac...
Sikh religious administrative unit This article is about a clergy system in Sikhism. For other uses, see Manji (disambiguation). Brass plaque at Gurdwara Chaubara Sahib Goindwal depicting scene of Guru Ramdas being enthroned to Guruship in the presence of regional Manji heads Part of a series onSikhism People Topics Outline History Glossary Sikh gurus Guru Nanak Guru Angad Guru Amar Das Guru Ram Das Guru Arjan Guru Hargobind Guru Har Rai Guru Har Krishan Guru Tegh Bahadur Guru Gobind Singh Gu...
Province of Afghanistan Zabul redirects here. For the city in Iran, see Zabol. Not to be confused with Kabul Province. Province in AfghanistanZabul زابلProvinceAlmond trees in Zabul ProvinceMap of Afghanistan with Zabul highlightedCoordinates: 32°06′N 67°06′E / 32.1°N 67.1°E / 32.1; 67.1Country AfghanistanCapitalQalatGovernment • GovernorMullah Bismillah Abdullah[1] • Deputy GovernorAbdul Khaliq Abid[1]Area[2...
Marshall McLuhanBerkas:McLuhan.jpgMarshall McLuhan, sekitar tahun 1968.LahirHerbert Marshall McLuhan(1911-07-21)21 Juli 1911Edmonton, Alberta, KanadaMeninggal31 Desember 1980(1980-12-31) (umur 69)Toronto, Ontario, KanadaAliranTeori media, Teori Sekolah Komunikasi TorontoMinat utamaMedia komunikasi, media massa, sensorium, Kritisme BaruGagasan pentingMedia adalah pesan, desa global, sosok dan latar media, tetrad dampak media, media panas dan dingin Dipengaruhi Harold Innis, Eric...
Voce principale: Società Sportiva Lazio. SS LazioStagione 2012-2013Sport calcio Squadra Lazio Allenatore Vladimir Petković All. in seconda Antonio Manicone Presidente Claudio Lotito Serie A7º (in Europa League) Coppa ItaliaVincitore Europa LeagueQuarti di finale Maggiori presenzeCampionato: Ledesma (36)Totale: Hernanes (53) Miglior marcatoreCampionato: Klose (15)Totale: Klose (16) StadioOlimpico Maggior numero di spettatori52 506 vs Juventus(29 gennaio 2013) Minor numero di spett...
اقتُرح دمج محتويات هذه المقالة مع المعلومات الموجودة في تلاوة. (ناقش) جزء من سلسلة مقالات حول البنية النصية سورة آية جزء حزب ربع حزب مُقَطَّعات البسملة مفصل مثاني مئون طوال شخصيات محورية آدم نوح إبراهيم يوسف موسى داود سليمان مريم عيسى محمد المحتوى صفات الله إعجاز القرآن ال...
Un Grafo de Turán T(n,r) es un ejemplo de un grafo extremal. Es el grafo en n vértices con el máximo número posible de aristas tal que no se forman (r + 1)- cliques. En particular, este grafo es T(13,4). La teoría de grafos extremales es una rama de las matemáticas que estudia cómo es que propiedades globales de un grafo pueden influir en su subestructura local.[1] Esta rama abarca un vasto número de resultados que describen cómo ciertas propiedades de las gráficas ...