Billinghurst
|
Read other articles:
Biblioteca Central de Seattle UbicaciónPaís Estados UnidosLocalidad SeattleDirección 1000 4th Avenue, Seattle, WA 98104Datos generalesTipo biblioteca y bibliotecaFundación 23 de mayo de 2004Información adicionalArquitecto Rem Koolhaas y Joshua Ramus[editar datos en Wikidata] La Biblioteca Central de Seattle (en inglés Seattle Central Library) es la sede principal del Sistema de Biblioteca Pública de Seattle (Washington, Estados Unidos). El edificio actual, de once plant...
Vuelta a España 2013PercorsoEdizione68ª Data24 agosto - 15 settembre PartenzaVilanova de Arousa ArrivoMadrid Percorso3 358,9 km, 21 tappe Valida perUCI World Tour 2013 Classifica finalePrimo Chris Horner Secondo Vincenzo Nibali Terzo Alejandro Valverde Classifiche minoriPunti Alejandro Valverde Montagna Nicolas Edet Combinata Chris Horner Cronologia Edizione precedenteEdizione successiva Vuelta a España 2012Vuelta a España 2014 Manuale La Vuelta a España 2013, s...
关于現行同名選區,请见「高雄市第六選舉區 (立法委員)」。 高雄市第六選舉區 (2010–2016年)立法院已撤销的區域立法委員選區国家中華民國所在行政区高雄市縣市高雄市区域三民區45里类型中華民國立法委員選舉區[*]已撤销選區设置时间2008年 (高雄市第三選舉區)撤销时间2020年现任議員委員會高雄市選舉委員會前身选区高雄市第一選舉區 (1989–2004年)后继选区 高雄市
Cinema Informação geral História do cinema Cinema lusófono Processos cinematográficos Roteiro Tratamento Pré-produção Filmagem Produção Pós-produção Sonorização Decupagem Montagem Edição Legendagem Dublagem/dobragem Continuidade Trilha sonora Efeito sonoro Efeito especial Making-of Cinema por país Alemanha Angola Argentina Armênia Azerbaijão Brasil Chile Coreia do Sul Escandinávia Espanha EUA França Índia Itália Irã Japão México Noruega Portugal Reino Unido Rússia Su
Thelmo Vargas MadrigalMinistro de Hacienda de Costa Rica 1990-1991Presidente Rafael Calderón FournierPredecesor Rodrigo Bolaños ZamoraSucesor Rodolfo Méndez Mata Información personalNacimiento 25 de agosto de 1943 (80 años) Santa Ana, Costa RicaNacionalidad CostarricenseInformación profesionalOcupación Economista y político[editar datos en Wikidata] Thelmo Vargas Madrigal (Santa Ana, 25 de agosto de 1943) es un economista y político costarricense. Es más conocido por ...
長崎電氣軌道1號系統是長崎電氣軌道所營運的路面電車運行系統,以長崎市的赤迫為起點,經和平公園[1]、長崎車站、大波止、新地中華街、濱町拱廊(日语:浜町アーケード)至崇福寺,往崇福寺方向稱為下行,往赤迫方向稱為上行,營運路線全長7.3公里,全程約需35分鐘,路線代表色為藍色[2],也是長崎電氣軌道在營運的系統中載客量最多的一個。 運行間隔...
1974 murder case of a Muslim Indian in Singapore Mohamed Azad Mohamed HusseinMohamed Azad, who was killed and disposed of in the oceanBornMohamed Azad s/o Mohamed Hussein1945SingaporeDied16 November 1974 (aged 29)Kallang, SingaporeCause of deathMurderedNationalitySingaporeanOther namesMohamed Azod Mohamed HusseinEducationNational University of Singapore (degree for Political science)Occupation(s)Magazine editor (before death)Police inspector (national service; former)Employer(s)Sing...
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (March 2019) (Learn how and when to remove this template message) A ribbed scarf hand-knit with a pattern that uses short rows. In knitting, a short row is a row that is not fully knitted; the work is turned before reaching the end of the row. When working short rows, techniq...
Cầu mây tại Đại hội Thể thao châu Á 2022Địa điểmNhà thi đấu Trung tâm Thể thao Kim HoaCác ngày24 tháng 9 – 07 tháng 10Quốc gia12← 20182026 → Cầu mây sẽ là một trong những bộ môn được thi đấu tại Đại hội Thể thao châu Á 2022 và được tổ chức tại Nhà thi đấu Trung tâm Thể thao Kim Hoa, Kim Hoa, Chiết Giang, Trung Quốc từ ngày 24 tháng 9 năm 2023 đến ngày 07 tháng 10 năm 2023.&...
Regular 257-gonA regular 257-gonTypeRegular polygonEdges and vertices257Schläfli symbol{257}Coxeter–Dynkin diagramsSymmetry groupDihedral (D257), order 2×257Internal angle (degrees)≈178.599°PropertiesConvex, cyclic, equilateral, isogonal, isotoxalDual polygonSelf In geometry, a 257-gon is a polygon with 257 sides. The sum of the interior angles of any non-self-intersecting 257-gon is 45,900°. Regular 257-gon The area of a regular 257-gon is (with t = edge length) A = 257 4 t 2 cot ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مايو 2019) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (...
Chinese singer and actress In this Chinese name, the family name is Song. Victoria Song宋茜Song in 2017BornSong Qian (宋茜) (1987-02-02) February 2, 1987 (age 36)[1]Qingdao, Shandong, ChinaOccupationsSingerdanceractressmodelhostauthorYears active2008–presentAgentVictoria StudioMusical careerGenresK-popMandopopR&BEDMInstrumentsVocalsLabelsSMMember off(x) Musical artistChinese nameChinese宋茜TranscriptionsStandard MandarinHanyu PinyinSòng QiànYue: CantoneseJyutpi...
Growth function exhibiting a singularity at a finite time The reciprocal function, exhibiting hyperbolic growth. When a quantity grows towards a singularity under a finite variation (a finite-time singularity) it is said to undergo hyperbolic growth.[1] More precisely, the reciprocal function 1 / x {\displaystyle 1/x} has a hyperbola as a graph, and has a singularity at 0, meaning that the limit as x → 0 {\displaystyle x\to 0} is infinite: any similar graph is said to exhibit h...
2017 Taiwanese television series This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Running Man Taiwanese TV series – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and when to remove this template message) Running ManPromotional posterAlso known asRunaway Groom逃婚100次GenreCom...
American lawyer and judge (born 1968) Tamara AshfordJudge of the United States Tax CourtIncumbentAssumed office December 19, 2014Appointed byBarack ObamaPreceded byMary CohenActing United States Assistant Attorney General for the Tax DivisionIn officeJune 6, 2014 – December 19, 2014PresidentBarack ObamaAttorney GeneralEric HolderPreceded byKathryn M. KeneallySucceeded byDavid A. Hubbert (acting) Personal detailsBornTamara Wenda Ashford (1968-12-19) December 19, 1968 (age 5...
Lê Văn HưngChức vụTư lệnh phó Quân đoàn IVNhiệm kỳ11/1974 – 30/4/1975Cấp bậc-Chuẩn tướngKế nhiệmSau cùngVị tríQuân khu IVTư lệnh-Trung tướng Nguyễn Vĩnh Nghi-Thiếu tướng Nguyễn Khoa Nam Tư lệnh Sư đoàn 21 Bộ binhNhiệm kỳ6/1973 – 11/1974Cấp bậc-Chuẩn tướngTiền nhiệm-Đại tá Chương Dzềnh QuayKế nhiệm-Đại tá Mạch Văn TrườngVị tríQuân khu IV Phụ tá Tư lệnh Qu...
Albert Einstein receiving American citizenship in 1940. Citizenship of the United States of America can be acquired in different ways, one of those being naturalization. Art and literature Authors Jackie Collins – Born in the United Kingdom. Became a U.S. citizen in 1960.[1] Thomas B. Costain – Born in Canada. Became an American citizen in 1920. Immaculée Ilibagiza – Born and raised in Rwanda. Became a U.S. citizen in 2013.[2] Klaus Mann – Born in Germany. Became a U....
Fictional character from Saiyuki For the Journey to the West character known as Genjo Sanzo in Japanese, see Tang Sanzang. Fictional character Genjo SanzoSaiyuki characterGenjo Sanzo as drawn by Minekura KazuyaFirst appearanceSaiyuki Vol #1 (1997)Created byMinekura KazuyaVoiced byWataru Takagi (Japanese, OVA)Toshihiko Seki (Japanese, original series)David Matranga (English)Lex Lang (English, Reload and Gunlock)In-universe informationAliasKonzen DoujiKouryu (the river drifter)SpeciesHumanGende...
Ivan yang MengerikanRekonstruksi wajah forensik dari Ivan IV oleh Mikhail Gerasimov[1]Tsar dari Seluruh RusiaBerkuasa16 Januari 1547 – 28 March 1584Penobatan16 Januari 1547PenerusFeodor IPangeran Agung dari MoskowBerkuasa3 Desember 1533 – 16 Januari 1547PendahuluVasili IIIInformasi pribadiKelahiran25 Agustus 1530Kolomenskoye, Kadipaten Agung MoskowKematian28 Maret [K.J.: 18 Maret] 1584 (umur 53)Moscow, Tsardom RusiaPemakamanCathedral of the Archangel, MoskowDinastiRurikNama lengka...
Delta Gangga, India dan Bangladesh Delta Sungai Gangga (juga disebut Delta Sunderbhan - Delta Benggala) ialah delta sungai di Asia Selatan, khususnya di kawasan Benggala yang terdiri atas kawasan Bangladesh dan negara bagian Benggala Barat, India. Delta Sungai Gangga merupakan delta terbesar di dunia, dan bermuara ke Teluk Benggala. Kawasan ini juga merupakan salah satu daerah tersubur di dunia, sehingga dinamai Delta Hijau. Delta itu, juga dikenal sebagai Delta Gangga-Brahmaputra, membentang...