Order-infinite-3 triangular honeycomb

Order-infinite-3 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,∞,3}
Coxeter diagrams
Cells {3,∞}
Faces {3}
Edge figure {3}
Vertex figure {∞,3}
Dual Self-dual
Coxeter group [3,∞,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 triangular honeycomb (or 3,∞,3 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,3}.

Geometry

It has three Infinite-order triangular tiling {3,∞} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many triangular tilings existing around each vertex in an order-3 apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

It is a part of a sequence of regular honeycombs with Infinite-order triangular tiling cells: {3,∞,p}.

It is a part of a sequence of regular honeycombs with order-3 apeirogonal tiling vertex figures: {p,∞,3}.

It is a part of a sequence of self-dual regular honeycombs: {p,∞,p}.

Order-infinite-4 triangular honeycomb

Order-infinite-4 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,∞,4}
{3,∞1,1}
Coxeter diagrams
=
Cells {3,∞}
Faces {3}
Edge figure {4}
Vertex figure {∞,4}
r{∞,∞}
Dual {4,∞,3}
Coxeter group [3,∞,4]
[3,∞1,1]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-4 triangular honeycomb (or 3,∞,4 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,4}.

It has four infinite-order triangular tilings, {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an order-4 apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,∞1,1}, Coxeter diagram, , with alternating types or colors of infinite-order triangular tiling cells. In Coxeter notation the half symmetry is [3,∞,4,1+] = [3,∞1,1].

Order-infinite-5 triangular honeycomb

Order-infinite-5 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,∞,5}
Coxeter diagrams
Cells {3,∞}
Faces {3}
Edge figure {5}
Vertex figure {∞,5}
Dual {5,∞,3}
Coxeter group [3,∞,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 triangular honeycomb (or 3,∞,5 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,5}. It has five infinite-order triangular tiling, {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an order-5 apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

Order-infinite-6 triangular honeycomb

Order-infinite-6 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,∞,6}
{3,(∞,3,∞)}
Coxeter diagrams
=
Cells {3,∞}
Faces {3}
Edge figure {6}
Vertex figure {∞,6}
{(∞,3,∞)}
Dual {6,∞,3}
Coxeter group [3,∞,6]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-6 triangular honeycomb (or 3,∞,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,6}. It has infinitely many infinite-order triangular tiling, {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an order-6 apeirogonal tiling, {∞,6}, vertex figure.


Poincaré disk model

Ideal surface

Order-infinite-7 triangular honeycomb

Order-infinite-7 triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,∞,7}
Coxeter diagrams
Cells {3,∞}
Faces {3}
Edge figure {7}
Vertex figure {∞,7}
Dual {7,∞,3}
Coxeter group [3,∞,7]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-7 triangular honeycomb (or 3,∞,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,7}. It has infinitely many infinite-order triangular tiling, {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an order-7 apeirogonal tiling, {∞,7}, vertex figure.


Ideal surface

Order-infinite-infinite triangular honeycomb

Order-infinite-infinite triangular honeycomb
Type Regular honeycomb
Schläfli symbols {3,∞,∞}
{3,(∞,∞,∞)}
Coxeter diagrams
=
Cells {3,∞}
Faces {3}
Edge figure {∞}
Vertex figure {∞,∞}
{(∞,∞,∞)}
Dual {∞,∞,3}
Coxeter group [∞,∞,3]
[3,((∞,∞,∞))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-infinite triangular honeycomb (or 3,∞,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,∞,∞}. It has infinitely many infinite-order triangular tiling, {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an infinite-order apeirogonal tiling, {∞,∞}, vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(∞,∞,∞)}, Coxeter diagram, = , with alternating types or colors of infinite-order triangular tiling cells. In Coxeter notation the half symmetry is [3,∞,∞,1+] = [3,((∞,∞,∞))].

Order-infinite-3 square honeycomb

Order-infinite-3 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,∞,3}
Coxeter diagram
Cells {4,∞}
Faces {4}
Vertex figure {∞,3}
Dual {3,∞,4}
Coxeter group [4,∞,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 square honeycomb (or 4,∞,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-infinite-3 square honeycomb is {4,∞,3}, with three infinite-order square tilings meeting at each edge. The vertex figure of this honeycomb is an order-3 apeirogonal tiling, {∞,3}.


Poincaré disk model

Ideal surface

Order-infinite-3 pentagonal honeycomb

Order-infinite-3 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,∞,3}
Coxeter diagram
Cells {5,∞}
Faces {5}
Vertex figure {∞,3}
Dual {3,∞,5}
Coxeter group [5,∞,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 pentagonal honeycomb (or 5,∞,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an infinite-order pentagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-6-3 pentagonal honeycomb is {5,∞,3}, with three infinite-order pentagonal tilings meeting at each edge. The vertex figure of this honeycomb is a heptagonal tiling, {∞,3}.


Poincaré disk model

Ideal surface

Order-infinite-3 hexagonal honeycomb

Order-infinite-3 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbol {6,∞,3}
Coxeter diagram
Cells {6,∞}
Faces {6}
Vertex figure {∞,3}
Dual {3,∞,6}
Coxeter group [6,∞,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 hexagonal honeycomb (or 6,∞,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an order-3 apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-infinite-3 hexagonal honeycomb is {6,∞,3}, with three infinite-order hexagonal tilings meeting at each edge. The vertex figure of this honeycomb is an order-3 apeirogonal tiling, {∞,3}.


Poincaré disk model

Ideal surface

Order-infinite-3 heptagonal honeycomb

Order-infinite-3 heptagonal honeycomb
Type Regular honeycomb
Schläfli symbol {7,∞,3}
Coxeter diagram
Cells {7,∞}
Faces {7}
Vertex figure {∞,3}
Dual {3,∞,7}
Coxeter group [7,∞,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 heptagonal honeycomb (or 7,∞,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an infinite-order heptagonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the order-infinite-3 heptagonal honeycomb is {7,∞,3}, with three infinite-order heptagonal tilings meeting at each edge. The vertex figure of this honeycomb is an order-3 apeirogonal tiling, {∞,3}.


Ideal surface

Order-infinite-3 apeirogonal honeycomb

Order-infinite-3 apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbol {∞,∞,3}
Coxeter diagram
Cells {∞,∞}
Faces Apeirogon {∞}
Vertex figure {∞,3}
Dual {3,∞,∞}
Coxeter group [∞,∞,3]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-3 apeirogonal honeycomb (or ∞,∞,3 honeycomb) a regular space-filling tessellation (or honeycomb). Each infinite cell consists of an infinite-order apeirogonal tiling whose vertices lie on a 2-hypercycle, each of which has a limiting circle on the ideal sphere.

The Schläfli symbol of the apeirogonal tiling honeycomb is {∞,∞,3}, with three infinite-order apeirogonal tilings meeting at each edge. The vertex figure of this honeycomb is an infinite-order apeirogonal tiling, {∞,3}.

The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.


Poincaré disk model

Ideal surface

Order-infinite-4 square honeycomb

Order-infinite-4 square honeycomb
Type Regular honeycomb
Schläfli symbol {4,∞,4}
Coxeter diagrams
=
Cells {4,∞}
Faces {4}
Edge figure {4}
Vertex figure {∞,4}
{∞,∞}
Dual self-dual
Coxeter group [4,∞,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-4 square honeycomb (or 4,∞,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,∞,4}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with four infinite-order square tilings existing around each edge and with an order-4 apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {4,∞1,1}, Coxeter diagram, , with alternating types or colors of cells. In Coxeter notation the half symmetry is [4,∞,4,1+] = [4,∞1,1].

Order-infinite-5 pentagonal honeycomb

Order-infinite-5 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,∞,5}
Coxeter diagrams
Cells {5,∞}
Faces {5}
Edge figure {5}
Vertex figure {∞,5}
Dual self-dual
Coxeter group [5,∞,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-5 pentagonal honeycomb (or 5,∞,5 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,∞,5}.

All vertices are ultra-ideal (existing beyond the ideal boundary) with five infinite-order pentagonal tilings existing around each edge and with an order-5 apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

Order-infinite-6 hexagonal honeycomb

Order-infinite-6 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,∞,6}
{6,(∞,3,∞)}
Coxeter diagrams
=
Cells {6,∞}
Faces {6}
Edge figure {6}
Vertex figure {∞,6}
{(5,3,5)}
Dual self-dual
Coxeter group [6,∞,6]
[6,((∞,3,∞))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-6 hexagonal honeycomb (or 6,∞,6 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,∞,6}. It has six infinite-order hexagonal tilings, {6,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-6 apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(∞,3,∞)}, Coxeter diagram, , with alternating types or colors of cells. In Coxeter notation the half symmetry is [6,∞,6,1+] = [6,((∞,3,∞))].

Order-infinite-7 heptagonal honeycomb

Order-infinite-7 heptagonal honeycomb
Type Regular honeycomb
Schläfli symbols {7,∞,7}
Coxeter diagrams
Cells {7,∞}
Faces {7}
Edge figure {7}
Vertex figure {∞,7}
Dual self-dual
Coxeter group [7,∞,7]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-7 heptagonal honeycomb (or 7,∞,7 honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {7,∞,7}. It has seven infinite-order heptagonal tilings, {7,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many heptagonal tilings existing around each vertex in an order-7 apeirogonal tiling vertex figure.


Ideal surface

Order-infinite-infinite apeirogonal honeycomb

Order-infinite-infinite apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbols {∞,∞,∞}
{∞,(∞,∞,∞)}
Coxeter diagrams
Cells {∞,∞}
Faces {∞}
Edge figure {∞}
Vertex figure {∞,∞}
{(∞,∞,∞)}
Dual self-dual
Coxeter group [∞,∞,∞]
[∞,((∞,∞,∞))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-infinite-infinite apeirogonal honeycomb (or ∞,∞,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,∞,∞}. It has infinitely many infinite-order apeirogonal tiling {∞,∞} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order apeirogonal tilings existing around each vertex in an infinite-order apeirogonal tiling vertex figure.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(∞,∞,∞)}, Coxeter diagram, , with alternating types or colors of cells.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)

Read other articles:

Львівська область Герб Львівської області Прапор Львівської області Основні дані Прізвисько: Галичина, Львівщина Країна: Україна Утворена: 4 грудня 1939 року Код КАТОТТГ: UA46000000000026241 Населення: 2 478 133 Площа: 21 831.97 км² Густота населення: 113,42 осіб/км² Поштові індекси 79000...

 

  مانزانيلو (بالإسبانية: Manzanillo)‏    مانزانيلو (المكسيك) تاريخ التأسيس 24 يوليو 1527[1]  تقسيم إداري البلد المكسيك  [2] عاصمة لـ Manzanillo Municipality, Colima [الإنجليزية]‏ خصائص جغرافية إحداثيات 19°03′12″N 104°18′59″W / 19.053205833333°N 104.31638055556°W / 19.053205833333; -104.316380555...

 

West-east street in Manhattan, New York 79th StreetThe Harry F. Sinclair House at 2 East 79th StreetMaintained byNYCDOTLength2.4 mi (3.9 km)[1]Width100 feet (30.48 m)LocationManhattanPostal code10024 (west), 10075 (east)Coordinates40°46′36″N 73°57′48″W / 40.7768°N 73.9632°W / 40.7768; -73.9632West end NY 9A / Henry Hudson Parkway in Riverside ParkEast end FDR Drive in YorkvilleNorth80th StreetSouth78th StreetConstr...

For the Martina McBride song, see There You Are (Martina McBride song). 1990 single by Goo Goo DollsThere You AreSingle by Goo Goo Dollsfrom the album Hold Me Up Released1990Recorded1990GenreAlternative Rock[1]Length3:40LabelMetal Blade RecordsSongwriter(s)John Rzeznik, Robby Takac, George TutuskaGoo Goo Dolls singles chronology There You Are (1990) I'm Awake Now (1991) Music videoThere You Are on YouTube There You Are is the debut single by the Goo Goo Dolls. It was the trio's first ...

 

هذه واحدة من سلسلة مقالات حولالأساطير حسب الحضارة عربية أرمنية الآزتيك قلطية ويلزية هبرديسية مسيحية صينية مصرية إغريقية غوارانية هندوسية إسلامية يابانية يهودية كورية المايا بلاد الرافدين ميكرونيسية إسكندنافية فارسية بولونيزية رومانية هوبية فلكلور روماني سلافية تركية أ

 

British linguist (1926–2001) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: David Neil MacKenzie – news · newspapers · books · scholar · JSTOR (April 2013) David Neil MacKenzieBorn(1926-04-08)8 April 1926London, England, UKDied13 October 2001(2001-10-13) (aged 75)Bangor, Wales, UKOccupation...

Frederick Corbin BlesseNickname(s)BootsBorn(1921-08-22)August 22, 1921Colón, Panama Canal ZoneDiedOctober 31, 2012(2012-10-31) (aged 91)Melbourne, FloridaBuriedArlington National CemeteryAllegianceUnited StatesService/branchUnited States Air ForceYears of service1945–1975RankMajor GeneralUnit413th Fighter Group18th Fighter-Bomber Group4th Fighter-Interceptor Wing366th Tactical Fighter WingCommands held32nd Fighter Interceptor Squadron474th Tactical Fighter Wing831st Air DivisionB...

 

Species of fish Cyprinodon nevadensis California Conservation status Vulnerable (IUCN 3.1)[1] Imperiled (NatureServe)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cyprinodontiformes Family: Cyprinodontidae Genus: Cyprinodon Species: C. nevadensis Binomial name Cyprinodon nevadensis(C. H. Eigenmann & R. S. Eigenmann, 1889) Subspecies C. n. nevadensis C. n. amargosae C. n. mionectes C. n. pector...

 

2011 Chinese filmThe Dragon KnightPoster洛克王国之圣龙骑士Directed byShengjun YuProductioncompaniesShenzhen Tencent Computer SystemsUYONG MediaToonmax MediaBeijing Ironhide Frog Creativity Media[1]Release date September 30, 2011 (2011-09-30) Running time90 minutesCountryChinaLanguageMandarinBox officeCN¥27.3 million The Dragon Knight (Chinese: 洛克王国之圣龙骑士) is a 2011 Chinese animated film directed by Shengjun Yu. The film was released on Sep...

Television channel TV3 SPORTBroadcast areaDenmarkOwnershipOwnerViaplay GroupSister channelsTV3, TV3+, TV3 Puls, TV3 MAX, SeeHistoryLaunched7 January 2013; 10 years ago (2013-01-07)ReplacedSportskanalenFormer namesTV3 Sport 1LinksWebsitetv3sport.dkAvailabilityTerrestrialBoxer- TV3 Sport is a Danish sports television channel, owned by Viaplay Group and operated by TV3 SPORT. The channel originally broadcast as TV 2 SPORT and was a joint-venture between TV 2 and Modern Times Gr...

 

Do 28 Skyservant Dornier Do-28D Skyservant Role STOL light utility aircraftType of aircraft Manufacturer Dornier Flugzeugbau GmbH First flight 29 April 1959 (Do 28 A/B)23 February 1966 (Do 28D) Status In civilian and military use Primary user German Air Force Number built *Do 28 - 1 Do 28A-1 - 60[1] Do 28B-1 - 60[1] Do 28D-1 - 54 Do 28D-2 - 172 Dornier 128-6 - 6 Developed from Dornier Do 27 Developed into Dornier 228 The type designation Dornier Do 28 comprises two differ...

 

Overview of the European maritime exploration of Australia This article is part of a series on theHistory of AustraliaReplica ship of the Duyfken, the first European ship to reach Australia Timeline and periods Prehistory European exploration (sea) European exploration (land) 1788–1850 1851–1900 1901–1945 1945–present Topics Abortion Agriculture Antisemitism Banking Capital punishment Civil rights Cinema Constitution Diplomacy Economics Federation Immigration Labour LGBT Military Mona...

Опис Цю фотографію було зроблено в рамках Вікіекспедиції Київ — Обухів — Гребінки. Копачівська сільська рада, Копачів, Обухівський район Джерело власна робота Час створення 24.07.2011 Автор зображення Amakuha Ліцензія див. нижче Увага: це зображення не може бути завантажене до ...

 

Heritage-listed building in Sydney, Australia Haymarket Post OfficeHaymarket Post Office, 633–635 George Street, SydneyLocation633–635 George Street, Sydney, City of Sydney, New South Wales, AustraliaCoordinates33°52′42″S 151°12′19″E / 33.8784°S 151.2052°E / -33.8784; 151.2052Built1927–1928ArchitectE. Henderson New South Wales Heritage RegisterOfficial nameKing George Hotel (former) and Haymarket Post OfficeTypestate heritage (complex / group)Designat...

 

帕尔杜河畔圣克鲁斯Santa Cruz do Rio Pardo市镇帕尔杜河畔圣克鲁斯在巴西的位置坐标:22°53′56″S 49°37′58″W / 22.8989°S 49.6328°W / -22.8989; -49.6328国家巴西州圣保罗州面积 • 总计1,116.377 平方公里(431.036 平方英里)海拔467 公尺(1,532 英尺)人口(2009) • 總計43,483人 • 密度39人/平方公里(101人/平方英里) 帕尔杜河畔圣...

SMA Negeri 11 Tangerang SelatanInformasiDidirikan26 Juni 2006JenisNegeriAkreditasiAKepala SekolahDrs. RodaniJurusan atau peminatanIPA dan IPSRentang kelasX, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJl. Sumatra 1, Rawa Lele, Jombang, Ciputat, Tangerang Selatan, Banten, IndonesiaTel./Faks.(021) 98292460MotoMotoSPORTIF SMA Negeri 11 Tangerang Selatan, merupakan salah satu Sekolah Menengah Atas Negeri yang ada di Provinsi Banten, Indonesia. Sama...

 

East German coxswain Dietmar DomnickDomnick (top) in 1957SportSportRowingClubASK Vorwärts Berlin Medal record Men's rowing Representing  East Germany European Rowing Championships 1957 Duisburg Coxed four Dietmar Domnick is a retired East German coxswain who won the 1957 European Rowing Championships title in coxed four, together with Lothar Wundratsch, Gerhard Müller, Egon Meyer and Heinz Dathe.[1] The men rowed for ASK Vorwärts Berlin.[2] It was the first time that E...

 

2 Raja-raja 1Kitab Raja-raja (Kitab 1 & 2 Raja-raja) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 2 Raja-rajaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen12← 1 Raja-raja 22 pasal 2 → 2 Raja-raja 1 (atau II Raja-raja 1, disingkat 2Raj 1) adalah pasal pertama Kitab 2 Raja-raja dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk Nabi-nabi Awal atau Nevi'im Rishonim [נביאים ראשונים] ...

Surrealist text The Solar Anus AuthorGeorges BatailleOriginal titleL'anus solaireIllustratorAndré MassonLanguageFrenchPublisherÉditions de la Galerie SimonPublication date1931OCLC8937274 The Solar Anus (French: L'anus solaire) is a short surrealist text by the French writer Georges Bataille, written in 1927 and published with drawings by André Masson in 1931.[1] Albeit elliptically, its aphorisms refer to decay, death, vegetation, natural disasters, impotence, frustration, enn...

 

Nippon Ishin no Kai Partei­vorsitz (daihyō) Nobuyuki Baba Parteivorsitzender Stellvertretender Vorsitz kyōdō-daihyō:Hirofumi Yoshimurafuku-daihyō:Junko Tsuji[1] General­sekretär Fumitake Fujita[1] Exekutivratsvorsitz Hirofumi Yanagase[1] PARC-Vorsitz Shun Otokita[1] Gründung November 2015 Haupt­sitz 1-7-16 Shimanouchi, Chūō, Osaka, Osaka Mitglieder 14.457 (2016)[2] Farbe(n) Grün Abgeordnete im Shūgiin 41/465(April 2023)...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!