In statistics, the matrix variate beta distribution is a generalization of the beta distribution. If U {\displaystyle U} is a p × p {\displaystyle p\times p} positive definite matrix with a matrix variate beta distribution, and a , b > ( p − 1 ) / 2 {\displaystyle a,b>(p-1)/2} are real parameters, we write U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}\left(a,b\right)} (sometimes B p I ( a , b ) {\displaystyle B_{p}^{I}\left(a,b\right)} ). The probability density function for U {\displaystyle U} is:
Here β p ( a , b ) {\displaystyle \beta _{p}\left(a,b\right)} is the multivariate beta function:
where Γ p ( a ) {\displaystyle \Gamma _{p}\left(a\right)} is the multivariate gamma function given by
If U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}(a,b)} then the density of X = U − 1 {\displaystyle X=U^{-1}} is given by
provided that X > I p {\displaystyle X>I_{p}} and a , b > ( p − 1 ) / 2 {\displaystyle a,b>(p-1)/2} .
If U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}(a,b)} and H {\displaystyle H} is a constant p × p {\displaystyle p\times p} orthogonal matrix, then H U H T ∼ B ( a , b ) . {\displaystyle HUH^{T}\sim B(a,b).}
Also, if H {\displaystyle H} is a random orthogonal p × p {\displaystyle p\times p} matrix which is independent of U {\displaystyle U} , then H U H T ∼ B p ( a , b ) {\displaystyle HUH^{T}\sim B_{p}(a,b)} , distributed independently of H {\displaystyle H} .
If A {\displaystyle A} is any constant q × p {\displaystyle q\times p} , q ≤ p {\displaystyle q\leq p} matrix of rank q {\displaystyle q} , then A U A T {\displaystyle AUA^{T}} has a generalized matrix variate beta distribution, specifically A U A T ∼ G B q ( a , b ; A A T , 0 ) {\displaystyle AUA^{T}\sim GB_{q}\left(a,b;AA^{T},0\right)} .
If U ∼ B p ( a , b ) {\displaystyle U\sim B_{p}\left(a,b\right)} and we partition U {\displaystyle U} as
where U 11 {\displaystyle U_{11}} is p 1 × p 1 {\displaystyle p_{1}\times p_{1}} and U 22 {\displaystyle U_{22}} is p 2 × p 2 {\displaystyle p_{2}\times p_{2}} , then defining the Schur complement U 22 ⋅ 1 {\displaystyle U_{22\cdot 1}} as U 22 − U 21 U 11 − 1 U 12 {\displaystyle U_{22}-U_{21}{U_{11}}^{-1}U_{12}} gives the following results:
Mitra proves the following theorem which illustrates a useful property of the matrix variate beta distribution. Suppose S 1 , S 2 {\displaystyle S_{1},S_{2}} are independent Wishart p × p {\displaystyle p\times p} matrices S 1 ∼ W p ( n 1 , Σ ) , S 2 ∼ W p ( n 2 , Σ ) {\displaystyle S_{1}\sim W_{p}(n_{1},\Sigma ),S_{2}\sim W_{p}(n_{2},\Sigma )} . Assume that Σ {\displaystyle \Sigma } is positive definite and that n 1 + n 2 ≥ p {\displaystyle n_{1}+n_{2}\geq p} . If
where S = S 1 + S 2 {\displaystyle S=S_{1}+S_{2}} , then U {\displaystyle U} has a matrix variate beta distribution B p ( n 1 / 2 , n 2 / 2 ) {\displaystyle B_{p}(n_{1}/2,n_{2}/2)} . In particular, U {\displaystyle U} is independent of Σ {\displaystyle \Sigma } .