Multivariate stable distribution

multivariate stable
Probability density function

Heatmap showing a Multivariate (bivariate) stable distribution with α = 1.1
Parameters exponent
- shift/location vector
- a spectral finite measure on the sphere
Support
PDF (no analytic expression)
CDF (no analytic expression)
Variance Infinite when
CF see text

The multivariate stable distribution is a multivariate probability distribution that is a multivariate generalisation of the univariate stable distribution. The multivariate stable distribution defines linear relations between stable distribution marginals.[clarification needed] In the same way as for the univariate case, the distribution is defined in terms of its characteristic function.

The multivariate stable distribution can also be thought as an extension of the multivariate normal distribution. It has parameter, α, which is defined over the range 0 < α ≤ 2, and where the case α = 2 is equivalent to the multivariate normal distribution. It has an additional skew parameter that allows for non-symmetric distributions, where the multivariate normal distribution is symmetric.

Definition

Let be the unit sphere in . A random vector, , has a multivariate stable distribution - denoted as -, if the joint characteristic function of is[1]

where 0 < α < 2, and for

This is essentially the result of Feldheim,[2] that any stable random vector can be characterized by a spectral measure (a finite measure on ) and a shift vector .

Parametrization using projections

Another way to describe a stable random vector is in terms of projections. For any vector , the projection is univariate stable with some skewness , scale and some shift . The notation is used if X is stable with for every . This is called the projection parameterization.

The spectral measure determines the projection parameter functions by:

Special cases

There are special cases where the multivariate characteristic function takes a simpler form. Define the characteristic function of a stable marginal as

Isotropic multivariate stable distribution

The characteristic function is The spectral measure is continuous and uniform, leading to radial/isotropic symmetry.[3] For the multinormal case , this corresponds to independent components, but so is not the case when . Isotropy is a special case of ellipticity (see the next paragraph) – just take to be a multiple of the identity matrix.

Elliptically contoured multivariate stable distribution

The elliptically contoured multivariate stable distribution is a special symmetric case of the multivariate stable distribution. If X is α-stable and elliptically contoured, then it has joint characteristic function for some shift vector (equal to the mean when it exists) and some positive definite matrix (akin to a correlation matrix, although the usual definition of correlation fails to be meaningful). Note the relation to characteristic function of the multivariate normal distribution: obtained when α = 2.

Independent components

The marginals are independent with , then the characteristic function is

Observe that when α = 2 this reduces again to the multivariate normal; note that the iid case and the isotropic case do not coincide when α < 2. Independent components is a special case of discrete spectral measure (see next paragraph), with the spectral measure supported by the standard unit vectors.

Heatmap showing a multivariate (bivariate) independent stable distribution with α = 1
Heatmap showing a multivariate (bivariate) independent stable distribution with α = 2

Discrete

If the spectral measure is discrete with mass at the characteristic function is

Linear properties

If is d-dimensional, A is an m x d matrix, and then AX + b is m-dimensional -stable with scale function skewness function and location function

Inference in the independent component model

Recently[4] it was shown how to compute inference in closed-form in a linear model (or equivalently a factor analysis model), involving independent component models.

More specifically, let be a set of i.i.d. unobserved univariate drawn from a stable distribution. Given a known linear relation matrix A of size , the observation are assumed to be distributed as a convolution of the hidden factors . . The inference task is to compute the most probable , given the linear relation matrix A and the observations . This task can be computed in closed-form in O(n3).

An application for this construction is multiuser detection with stable, non-Gaussian noise.

See also

Resources

Notes

  1. ^ J. Nolan, Multivariate stable densities and distribution functions: general and elliptical case, BundesBank Conference, Eltville, Germany, 11 November 2005. See also http://academic2.american.edu/~jpnolan/stable/stable.html
  2. ^ Feldheim, E. (1937). Etude de la stabilité des lois de probabilité . Ph. D. thesis, Faculté des Sciences de Paris, Paris, France.
  3. ^ User manual for STABLE 5.1 Matlab version, Robust Analysis Inc., http://www.RobustAnalysis.com
  4. ^ D. Bickson and C. Guestrin. Inference in linear models with multivariate heavy-tails. In Neural Information Processing Systems (NIPS) 2010, Vancouver, Canada, Dec. 2010. https://www.cs.cmu.edu/~bickson/stable/

Read other articles:

Children's television series Kate & Mim-MimTitle cardGenreChildren'sCreated byScott StewartJulie StewartDirected byScott StewartVoices of Maryke Hendrikse Lee Tockar Tabitha St. Germain Brian Drummond Matt Hill Theme music composerDaniel IngramOpening themeYou and Me, Kate & Mim-Mim, sung by Jessica ZralyEnding themeYou and Me, Kate & Mim-Mim (instrumental)ComposerMichael Richard PlowmanCountry of originCanadaUnited Kingdom[1]Original languageEnglishNo. of seasons2No. of e...

 

 

Over the Garden WallIklan surat kabarSutradaraDavid SmithProduser Albert E. Smith (produser) Ditulis olehSam TaylorBerdasarkanOver the Garden Wall (novel)oleh Millicent EvisonPemeranBessie LoveSinematograferClyde De Vinna[1]PerusahaanproduksiVitagraph Company of AmericaDistributorVitagraph Company of AmericaTanggal rilis 21 September 1919 (1919-09-21) (Amerika Serikat) Durasi5 rol[2]Negara Amerika Serikat BahasaFilm bisu dengan antar judul Inggris Over the Garden Wall...

 

 

PetungkriyanaKecamatanPeta lokasi Kecamatan PetungkriyanaNegara IndonesiaProvinsiJawa TengahKabupatenPekalonganPemerintahan • CamatHadi Surono, S.IP, MSIPopulasi • Total12,312 jiwa jiwaKode Kemendagri33.26.04 Kode BPS3326040 Luas7.358,523 haDesa/kelurahan9 Petungkriyana (Jawa: ꦥꦼꦠꦸꦁꦏꦿꦶꦪꦤ, translit. Petungkriyana) adalah sebuah kecamatan di Kabupaten Pekalongan, Provinsi Jawa Tengah, Indonesia. Luas wilayah Kecamatan Petungkriyana 73,59...

Široká Höhe 2210 m n.m. Lage Slowakei Gebirge Hohe Tatra Koordinaten 49° 12′ 34″ N, 20° 8′ 15″ O49.2094520.1375912210Koordinaten: 49° 12′ 34″ N, 20° 8′ 15″ O Široká (Hohe Tatra) (Slowakei) Typ Felsgipfel f6 Die Široká (deutsch Schiroka, Javorinaer Schiroka bzw. eingedeutscht Breiter Berg, ungarisch Siroka, Javorinai Siroka oder übersetzt Széles-hegy, polnisch Szeroka Jaworzyńska)[1] ist...

 

 

Tangendorf Gemeinde Toppenstedt Koordinaten: 53° 18′ N, 10° 6′ O53.2978410.0982635Koordinaten: 53° 17′ 52″ N, 10° 5′ 54″ O Höhe: 35 m Eingemeindung: 1. Juli 1972 Postleitzahl: 21442 Vorwahl: 04173 Tangendorf Vossbur Tangendorf ist ein Gemeindeteil der Gemeinde Toppenstedt in der Samtgemeinde Salzhausen im Landkreis Harburg in Niedersachsen. Inhaltsverzeichnis 1 Geografische Lage 2 Beschreibung 3 Geschichte 3.1 Einwoh...

 

 

Народний дім 50°18′18″ пн. ш. 34°53′37″ сх. д. / 50.30526700002777574° пн. ш. 34.89370400002777473° сх. д. / 50.30526700002777574; 34.89370400002777473Координати: 50°18′18″ пн. ш. 34°53′37″ сх. д. / 50.30526700002777574° пн. ш. 34.89370400002777473° сх. д. / 50.30526700002777574; 34.8937040000277747...

Batalha de Suaquém Conflitos Luso-Turcos Suquém e a frota portuguesa, desenhadas em 1540 por D. João de Castro. Data 21 de agosto de 1415 (608 anos) Local Suaquém Desfecho Vitória portuguesa Suaquém arrasada. Beligerantes Portugal Império Otomano Comandantes D. Estevão da Gama D. Cristóvão da Gama Desconhecido. Forças 1000 homens Desconhecido Campanhas coloniais portuguesasConflitos prolongados mostrados em negrito Data  Região  1415 Ceuta 1437 Marrocos 1458 Mar...

 

 

Konsulat Jenderal Republik Indonesia di HamburgGeneralkonsulat der Republik Indonesien in Hambiurg Koordinat53°35′50″N 9°59′38″E / 53.597329°N 9.993856°E / 53.597329; 9.993856Lokasi Hamburg, JermanAlamatBebelallee 15Hamburg, JermanYurisdiksi Daftar Bremen Hamburg Niedersachsen Schleswig-Holstein Konsul JenderalRenata Bulan Harungguan SiagianSitus webkemlu.go.id/hamburg/id Konsulat Jenderal Republik Indonesia di Hamburg (KJRI Hamburg) (Jerman: Generalkon...

 

 

Indonesian Television AwardsLogo Indonesian Television AwardsDeskripsiPrestasi dalam acara televisi dan insan pertelevisianLokasiJakartaNegaraIndonesiaDipersembahkan olehMedia Nusantara CitraDiberikan perdana2016Situs webwww.indonesiantvawards.comSiaran televisi/radioSaluranRCTI (2016-sekarang)MNCTV (2016-2020)GTV (2021-sekarang)K-Vision (2019-sekarang)Waktu tayang120-150 menitProduserKanti Mirdiati Indonesian Television Awards (sering disingkat ITA, bahasa Indonesia: Penghargaan Televisi...

Poso adalah perintah yang melarang masyarakat atau sebagian anggota masyarakat di suatu negeri di Maluku Bagian Tengah untuk mengonsumsi, memelihara, menyakiti, menyimpan, dan atau membunuh hewan dan tumbuhan tertentu. Poso juga bisa diartikan sebagai larangan, pantangan, tabu, atau pamali.[1] Tabu untuk memakan hewan dan tumbuhan tertentu sudah ada dalam kebudayaan Ambon sejak dahulu kala. Poso adalah salah satu ciri atau karakteristik yang dimiliki fam (matarumah) dan soa dalam masy...

 

 

American actor Steve Peterson (actor)NationalityAmericanOccupationActorYears active1986–2008 Steve Peterson is an American actor who was seen as Stanley in The Body at the Matrix Theatre, King Arthur in Dennis Gersten’s The Author’s Thumb,[1] Tranio in Taming of the Shrew at the Globe Playhouse, Aguecheek in Twelfth Night for both Shakespeare at Play and Ellen Geer's Theatricum Botanicum, and as the Ghost in Mark Ringer’s production of Hamlet. Background He has appeared a...

 

 

British actor and producer Simon KassianidesKassianides in 2012BornSimon Mario KassianidesLondon, EnglandOccupationActorYears active2004–present Simon Mario Kassianides is an English actor, film director, producer and screenwriter. Early life Kassianides was born in London, of Greek Cypriot origin, the son of Helen and Mario Kassianides, both business owners. Kassianides has an older brother, Photis Kassianides, who works in finance. Kassianides was brought up in Clapham and educated a...

1946 film For other uses, see Crisis (disambiguation). CrisisDirected byIngmar BergmanScreenplay byIngmar BergmanBased onModerhjertetby Leck FischerProduced by Harald Molander Victor Sjöström Starring Inga Landgré Stig Olin Marianne Löfgren Dagny Lind Allan Bohlin Ernst Eklund Signe Wirff CinematographyGösta RooslingEdited byOscar RosanderMusic byErland von KochDistributed bySvensk Filmindustri (SF)Release date25 February 1946Running time93 minutesCountrySwedenLanguageSwedish Crisis (Swe...

 

 

Place in Inner Carniola, SloveniaDolenje PoljaneDolenje PoljaneLocation in SloveniaCoordinates: 45°41′33.09″N 14°31′12.58″E / 45.6925250°N 14.5201611°E / 45.6925250; 14.5201611Country SloveniaTraditional regionInner CarniolaStatistical regionLittoral–Inner CarniolaMunicipalityLoška DolinaArea • Total8.4 km2 (3.2 sq mi)Elevation874.5 m (2,869.1 ft)Population (2002) • Total8[1] Dolenje Poljane (...

 

 

How I Met Your Mother adalah sitkom Amerika Utara yang ditulis dan diciptakan oleh Carter Bays dan Craig Thomas. Sitkom ini pertama disiarkan tanggal 19 September 2005 di CBS dan akan menyelesaikan rencana siarnya selama sembilan tahun pada 2014 dengan 208 episode. Berlatar di Manhattan modern, seri ini mengisahkan kehidupan sosial dan asmara lima orang yang saling bersahabat, Ted Mosby (Josh Radnor) dan teman-temannya Marshall Eriksen (Jason Segel), Robin Scherbatsky (Cobie Smulders), Lily A...

2011 French filmMy Little PrincessFrench posterDirected byEva IonescoWritten byEva IonescoMarc CholodenkoPhilippe Le GuayProduced byFrançois-Xavier FrantzStarringIsabelle HuppertCinematographyJeanne LapoirieEdited byLaurence BriaudMusic byBertrand BurgalatProductioncompaniesLes Productions Bagheera Canal + France 2Distributed bySophie Dulac DistributionRelease dates 17 May 2011 (2011-05-17) (Cannes) 29 June 2011 (2011-06-29) Running time105 minutesCountriesF...

 

 

Hotel and restaurant in Manhattan, New York The NoMadGeneral informationTypeHotelAddress1170 BroadwayTown or cityNew YorkCountryUnited StatesOwnerSydell GroupWebsiteOfficial websiteCoordinates40°44′42″N 73°59′19″W / 40.744960°N 73.988568°W / 40.744960; -73.988568Built1902–1903ArchitectSchickel & DitmarsArchitectural style(s)Beaux ArtsRestaurant informationEstablished2012[1]Owner(s)Daniel HummHead chefDaniel HummRating Michelin Guide, 2018[...

 

 

Perusahaan Kereta Api ShikokuJenisKorporasiIndustriKereta api swastaPendahuluKereta Api Nasional Jepang (JNR)Didirikan1 April 1987 (privatisasi JNR)KantorpusatTakamatsu, Kagawa, JapanWilayah operasiShikokuTokohkunciMasafumi Izumi (CEO)[1]JasaKereta penumpang Gerbong barang Bus antar kotaPendapatan31,35 milyar yen (2007)Total aset357,137 milyar yen (2007)Total ekuitas3,5 milyar yenPemilikJapan Railway Construction, Transport and Technology Agency (100%)Karyawan2.942 (pada 1 April 2007)...

For other places with similar names, see Aliabad. Village in Lorestan, IranAliabad-e Chahi علي ابادچاهيVillageAliabad-e ChahiCoordinates: 33°26′24″N 48°30′24″E / 33.44000°N 48.50667°E / 33.44000; 48.50667CountryIranProvinceLorestanCountyKhorramabadBakhshCentralRural DistrictDehpirPopulation (2006) • Total98Time zoneUTC+3:30 (IRST) • Summer (DST)UTC+4:30 (IRDT) Aliabad-e Chahi (Persian: علي ابادچاهي, also Ro...

 

 

1964 aviation accident United Airlines Flight 823The aircraft involved, at Chicago O'Hare International Airport in 1963AccidentDateJuly 9, 1964 (1964-07-09)SummaryIn-flight fire for reasons unknown, loss of controlSiteCocke County, near Parrottsville, Tennessee, United States 36°1′36.51″N 83°3′41.19″W / 36.0268083°N 83.0614417°W / 36.0268083; -83.0614417AircraftAircraft typeVickers Viscount 745DOperatorUnited Airlines RegistrationN7405&#...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!