Elongated triangular bipyramid

Elongated triangular bipyramid
TypeJohnson
J13J14J15
Faces6 triangles
3 squares
Edges15
Vertices8
Vertex configuration2(33)
6(32.42)
Symmetry groupD3h, [3,2], (*322)
Rotation groupD3, [3,2]+, (322)
Dual polyhedronTriangular bifrustum
Propertiesconvex
Net

In geometry, the elongated triangular bipyramid (or dipyramid) or triakis triangular prism a polyhedron constructed from a triangular prism by attaching two tetrahedrons to its bases. It is an example of Johnson solid.

Construction

The elongated triangular bipyramid is constructed from a triangular prism by attaching two tetrahedrons onto its bases, a process known as the elongation.[1] These tetrahedrons cover the triangular faces so that the resulting polyhedron has nine faces (six of them are equilateral triangles and three of them are squares), fifteen edges, and eight vertices.[2] A convex polyhedron in which all of the faces are regular polygons is the Johnson solid. The elongated bipyramid is one of them, enumerated as the fourteenth Johnson solid .[3]

Properties

3D model of an elongated triangular bipyramid

The surface area of an elongated triangular bipyramid is the sum of all polygonal face's area: six equilateral triangles and three squares. The volume of an elongated triangular bipyramid can be ascertained by slicing it off into two tetrahedrons and a regular triangular prism and then adding their volume. The height of an elongated triangular bipyramid is the sum of two tetrahedrons and a regular triangular prism' height. Therefore, given the edge length , its surface area and volume is formulated as:[2][4]

It has the same three-dimensional symmetry group as the triangular prism, the dihedral group of order twelve. The dihedral angle of an elongated triangular bipyramid can be calculated by adding the angle of the tetrahedron and the triangular prism:[5]

  • the dihedral angle of a tetrahedron between two adjacent triangular faces is ;
  • the dihedral angle of the triangular prism between the square to its bases is , and the dihedral angle between square-to-triangle, on the edge where tetrahedron and triangular prism are attached, is ;
  • the dihedral angle of the triangular prism between two adjacent square faces is the internal angle of an equilateral triangle .

Appearances

The nirrosula, an African musical instrument woven out of strips of plant leaves, is made in the form of a series of elongated bipyramids with non-equilateral triangles as the faces of their end caps.[6]

References

  1. ^ Rajwade, A. R. (2001), Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem, Texts and Readings in Mathematics, Hindustan Book Agency, p. 84–89, doi:10.1007/978-93-86279-06-4, ISBN 978-93-86279-06-4.
  2. ^ a b Berman, Martin (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR 0290245.
  3. ^ Uehara, Ryuhei (2020), Introduction to Computational Origami: The World of New Computational Geometry, Springer, p. 62, doi:10.1007/978-981-15-4470-5, ISBN 978-981-15-4470-5, S2CID 220150682.
  4. ^ Sapiña, R., "Area and volume of the Johnson solid ", Problemas y Ecuaciones (in Spanish), ISSN 2659-9899, retrieved 2020-09-09.
  5. ^ Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, S2CID 122006114, Zbl 0132.14603.
  6. ^ Gerdes, Paulus (2009), "Exploration of technologies, emerging from African cultural practices, in mathematics (teacher) education", ZDM Mathematics Education, 42 (1): 11–17, doi:10.1007/s11858-009-0208-2, S2CID 122791717.

Read other articles:

14th/15th-century Duke of Burgundy John the FearlessCopy of an original from c. 1415 by Rogier van der WeydenDuke of BurgundyReign27 April 1404 – 10 September 1419PredecessorPhilip IISuccessorPhilip IIIBorn28 May 1371Ducal palace, Dijon, BurgundyDied10 September 1419 (aged 48)Montereau, FranceBurialChampmol, DijonSpouse Margaret of Bavaria ​(m. 1385)​Issuemore... Margaret, Dauphine of France Mary, Duchess of Cleves Philip III, Duke of Burgundy Anne,...

 

Frédéric Antonetti Informasi pribadiNama lengkap Frédéric AntonettiTanggal lahir 19 Agustus 1961 (umur 62)Tempat lahir Venzolasca, PrancisInformasi klubKlub saat ini Rennes (Manajer)Karier senior*Tahun Tim Tampil (Gol)1972–1973 Vescovato 1973–1979 Bastia 1979–1982 Vichy 1982–1983 Bastia 2 (0)1983–1985 Béziers 1985–1987 Le Puy 1987–1990 Bastia 53 (6)Kepelatihan1994–1998 Bastia1998–1999 Gamba Osaka1999–2001 Bastia2001–2004 Saint-Étienne2005–2009 Nice2009– Re...

 

Опис файлу Опис зображення персонажа аніме Джерело офіційний сайт серіалу Час створення 29 січня 2009 року Автор зображення якісь японці Ліцензія Ця робота є невільною — тобто, не відповідає визначенню вільних творів культури. Згідно з рішенням фонду «Вікімедіа» від 23&#...

Pour les articles homonymes, voir Walk of Fame. Hollywood Walk of Fame Le Walk of Fame, sur Hollywood Boulevard.Au premier plan, l'étoile de Telly Savalas. Situation Coordonnées 34° 06′ 06″ nord, 118° 20′ 24″ ouest Pays États-Unis Région Californie Ville Los Angeles Quartier(s) Hollywood Morphologie Type Trottoir Histoire Protection Monument historique-culturel de Los Angeles modifier  Le Hollywood Walk of Fame [wɔːk ʌv feɪm][1], en...

 

Вілла-АньєдоVilla Agnedo Колишня комуна Країна  ІталіяРегіон Трентіно-Альто-АдіджеПровінція ТрентоКод ISTAT 022221Поштові індекси 38050Телефонний код 0461Координати 46°03′00″ пн. ш. 11°32′00″ сх. д. / 46.05000° пн. ш. 11.53333° сх. д. / 46.05000; 11.53333Координати: 46°03′00...

 

Kloster St. Gabriel, Prag-Smíchov Die Abtei St. Gabriel war ein Benediktinerinnen-Kloster, das von 1888 bis 1918 als Kloster St. Gabriel (tschechisch Klášter svatého Gabriela) in der Holečkova ulice in Smíchov (heute ein Stadtteil von Prag) bestand. Danach befand es sich bis zum Jahr 2008 auf Schloss Bertholdstein bei Fehring in der Oststeiermark. Im Oktober 2007 schloss sich der Konvent als selbständiges Priorat der Föderation der Schwestern von der hl. Lioba an. Seit dem 29. Novembe...

Теоре́ма Фа́рі — теоретико-графове твердження про можливість випрямити ребра будь-якого планарного графа. Іншими словами, дозвіл малювати ребра не у вигляді відрізків, а у вигляді кривих, не розширює класу планарних графів. Названа на честь угорського математика Ішт...

 

Jalan Enggano adalah nama salah satu jalan utama Jakarta. Jalan ini menghubungkan Stasiun Tanjung Priok, Terminal Tanjung Priok dan Jalan Yos Sudarso/Jalan Raya Sulawesi. Nama jalan ini diambil dari nama salah satu pulau di Indonesia yaitu, Pulau Enggano. Jalan ini membentang sepanjang 1,1 km di Tanjung Priok, Tanjung Priok, Jakarta Utara. Jalan ini dilewati oleh bus Transjakarta koridor 10. Jalan ini cukup padat, akibat banyak truk kontainer yang melewati jalan ini dari dan menuju Pelab...

 

2003 Baseball World CupXXXV Copa del Mundo de BéisbolCuba 2003Tournament detailsHost countryCubaVenue(s)5 (in 4 host cities)Dates12–25 OctoberTeams15Final positionsChampions Cuba (24th title)Runners-up PanamaThird place JapanFourth place Chinese TaipeiTournament statisticsGames played60Most valuable player Takashi Yoshiura← 2001 2005 → The 2003 Baseball World Cup (BWC) was the 35th international Men's amateur baseball tournament. The tournament was sanc...

President of Nicaragua from 27 to 30 August 1910 In this Spanish name, the first or paternal surname is Mena and the second or maternal family name is Vado. This article is about the Nicaraguan politician. For other people, see Luis Mena (disambiguation). Luis MenaPresident of Nicaragua(Acting)In office27 August 1910 – 30 August 1910Preceded byJosé Dolores Estrada (Acting)Succeeded byJuan José Estrada (Acting) Personal detailsBornc. 1865Nandaime, NicaraguaDied20 May 1928 ...

 

Petru Maior University of Târgu MureșTypePublicEstablished1960RectorProf. univ. dr. Călin EnăchescuStudents3,691 (2012)LocationTârgu Mureș, RomaniaWebsitewww.upm.ro The Petru Maior University (Romanian: Universitatea Petru Maior) of Târgu Mureș, Romania, was a university founded in 1960. In September 2018, Petru Maior University was incorporated into the University of Medicine and Pharmacy of Târgu Mureș.[1][2] History Founded in 1960 as The Pedagogical Institute of ...

 

University in South Korea Gwangju Institute of Science and Technology (GIST)MottoA Proud Creator of Future Science and TechnologyTypeNationalEstablished1993PresidentKichul Lim (임기철)Students2,122 (as of January 2018)Undergraduates868 (as of January 2018)Postgraduates1,254 (as of January 2018)Address123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, South Korea 35°13′35″N 126°50′24″E / 35.2265°N 126.8400°E / 35.2265; 126.8400Websitegist.ac.krKorean na...

Портал:Електроніка Проєкт:Електроніка Обговорення проєкту Електроніка Радіоелектроніка Учасники проєкту Розділ Вікіпедії: ЕлектронікаПроєкт  |  Портал (Скор.: П:Елект) Редагувати Ласкаво просимо до порталуЕлектроніка Електроніка (від грец. Ηλεκτρόνιο ...

 

Canadian politician Joan PhillipMLAMember of the British Columbia Legislative Assemblyfor Vancouver-Mount PleasantIncumbentAssumed office June 24, 2023Preceded byMelanie Mark Personal detailsBorn1952 or 1953 (age 70–71)[1]North Vancouver, British Columbia[2]Political partyBC NDPSpouseStewart Phillip[3]RelationsChief Dan George (grandfather)[2] Joan Phillip MLA (born 1952/1953) is a Canadian politician who has served as member of the Legis...

 

Восточный портал в Sunset Tunnel на линии N Judah Состав на улицах Подземная станция Muni Metro — название современной трамвайной системы города Сан-Франциско (США). Она представляет собой подземный трамвай и напоминает метро на маршрутах, проходящих под землёй под улицей Маркет-с...

Кизикерме́нський шлях — поштовий шлях, тракт, заснований на початку 70-х рр. XVIII століття за наказом генерал-фельдмаршала П. Рум'янцева-Задунайського й запорізького кошового отамана Петра Калнишевського. Починався на правому березі Дніпра навпроти Кременчука, йшов парал...

 

Masyarakat Sande menginisiasikan penandaan dengan tanah liat putih dan lemak hewan, yang disebut Hojo atau Wojeh. Sande, juga dikenal sebagai zadεgi, bundu, bundo dan bondo, adalah sebuah perhimpunan rahasia wanita di Liberia, Sierra Leone, Guinea dan Pantai Gading. Masyarakat Sande mengikrarkan para gadis yang memasuki masa dewasa dengan ritual-ritual yang meliputi sunat perempuan.[1] Referensi ^ MacCormack, Carol P. (1975). Dana Raphael, ed. Bundu: Political Implications of Female ...

 

International airport serving Cairo, Egypt Cairo International Airportمطار القاهرة الدوليMaṭār El Qāhira El DawliIATA: CAIICAO: HECASummaryAirport typePublicOwnerEgyptian Holding Company for Airports and Air NavigationOperatorCairo Airport CompanyServesGreater CairoLocationHeliopolis (Cairo)Hub for Air Arabia Egypt Air Cairo Egyptair Nile Air Elevation AMSL382 ft / 116 mCoordinates30°07′19″N 31°24′20″E / 30.12194°N 31.40556°E...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SDN Pondok Bambu 13InformasiJenisSekolah Dasar NegeriJumlah kelasKelas I sampai kelas VIJumlah siswa246 orang[1]AlamatLokasiJl. Balai Rakyat III, Kelurahan Pondok Bambu, Kecamatan Duren Sawit, Jakarta Timur, Jakarta, IndonesiaMoto Sekol...

 

2015 Chinese filmThe Grow 2金箍棒传奇2:沙僧的逆袭Directed byHa LeiMusic byChen ZhiyiRelease date May 29, 2015 (2015-05-29) Running time91 minutesCountryChinaLanguageMandarinBox officeCN¥4.36 million (China) The Grow 2 (Chinese: 金箍棒传奇2:沙僧的逆袭) is a 2015 Chinese animated adventure comedy film directed by Ha Lei. It was released in China on May 29, 2015.[1] The film was preceded by The Grow (2012). Voice cast Yu Li Wu Tian Hao Rong Ron...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!