Chromatic scale

Chromatic scale: every key of one octave on the piano keyboard

The chromatic scale (or twelve-tone scale) is a set of twelve pitches (more completely, pitch classes) used in tonal music, with notes separated by the interval of a semitone. Chromatic instruments, such as the piano, are made to produce the chromatic scale, while other instruments capable of continuously variable pitch, such as the trombone and violin, can also produce microtones, or notes between those available on a piano.

Most music uses subsets of the chromatic scale such as diatonic scales. While the chromatic scale is fundamental in western music theory, it is seldom directly used in its entirety in musical compositions or improvisation.

Definition

The chromatic scale is a musical scale with twelve pitches, each a semitone, also known as a half-step, above or below its adjacent pitches. As a result, in 12-tone equal temperament (the most common tuning in Western music), the chromatic scale covers all 12 of the available pitches. Thus, there is only one chromatic scale.[a] The ratio of the frequency of one note in the scale to that of the preceding note is given by .[1]

In equal temperament, all the semitones have the same size (100 cents), and there are twelve semitones in an octave (1200 cents). As a result, the notes of an equal-tempered chromatic scale are equally-spaced.

The chromatic scale...is a series of half steps which comprises all the pitches of our [12-tone] equal-tempered system.

— Allen Forte (1979)[2]

All of the pitches in common use, considered together, constitute the chromatic scale. It is made up entirely of successive half steps, the smallest interval in Western music....Counting by half steps, an octave includes twelve different pitches, white and black keys together. The chromatic scale, then, is a collection of all the available pitches in order upward or downward, one octave's worth after another.

— Walter Piston (1987)[3]

A chromatic scale is a nondiatonic scale consisting entirely of half-step intervals. Since each tone of the scale is equidistant from the next [symmetry] it has no tonic [key].[4] ...
Chromaticism [is t]he introduction of some pitches of the chromatic scale into music that is basically diatonic in orientation, or music that is based on the chromatic scale instead of the diatonic scales.[5]

— Benward & Saker (2003)

The ascending and descending chromatic scale is shown below.[4]

 {
\override Score.TimeSignature #'stencil = ##f
\relative c' {
  \clef treble \time 12/4
  c4^\markup { Ascending } cis d dis e f fis g gis a ais b
  c^\markup { Descending } b bes a aes g ges f e es d des c
  }
}
Chromatic scale drawn as a circle
The diatonic scale notes (above) and the non-scale chromatic notes (below)[2]

The twelve notes of the octave—all the black and white keys in one octave on the piano—form the chromatic scale. The tones of the chromatic scale (unlike those of the major or minor scale) are all the same distance apart, one half step. The word chromatic comes from the Greek chroma, color; and the traditional function of the chromatic scale is to color or embellish the tones of the major and minor scales. It does not define a key, but it gives a sense of motion and tension. It has long been used to evoke grief, loss, or sorrow. In the twentieth century it has also become independent of major and minor scales and is used as the basis for entire compositions.

— Roger Kamien (1976)[6]

Notation

The circle of fifths drawn within the chromatic circle as a star dodecagram.[7]

The chromatic scale has no set enharmonic spelling that is always used. Its spelling is, however, often dependent upon major or minor key signatures and whether the scale is ascending or descending. In general, the chromatic scale is usually notated with sharp signs when ascending and flat signs when descending. It is also notated so that no scale degree is used more than twice in succession (for instance, G – G – G).

Similarly, some notes of the chromatic scale have enharmonic equivalents in solfege. The rising scale is Do, Di, Re, Ri, Mi, Fa, Fi, Sol, Si, La, Li, Ti and the descending is Ti, Te/Ta, La, Le/Lo, Sol, Se, Fa, Mi, Me/Ma, Re, Ra, Do, However, once 0 is given to a note, due to octave equivalence, the chromatic scale may be indicated unambiguously by the numbers 0-11 mod twelve. Thus two perfect fifths are 0-7-2. Tone rows, orderings used in the twelve-tone technique, are often considered this way due to the increased ease of comparing inverse intervals and forms (inversional equivalence).

Pitch-rational tunings

Pythagorean

The most common conception of the chromatic scale before the 13th century was the Pythagorean chromatic scale (Play). Due to a different tuning technique, the twelve semitones in this scale have two slightly different sizes. Thus, the scale is not perfectly symmetric. Many other tuning systems, developed in the ensuing centuries, share a similar asymmetry.

In Pythagorean tuning (i.e. 3-limit just intonation) the chromatic scale is tuned as follows, in perfect fifths from G to A centered on D (in bold) (G–D–A–E–B–F–C–G–D–A–E–B–F–C–G–D–A), with sharps higher than their enharmonic flats (cents rounded to one decimal):

C D C D E D E F G F G A G A B A B C
Pitch
ratio
1 256243 21872048 98 3227 1968316384 8164 43 1024729 729512 32 12881 65614096 2716 169 5904932768 243128 2
Cents 0 90.2 113.7 203.9 294.1 317.6 407.8 498 588.3 611.7 702 792.2 815.6 905.9 996.1 1019.6 1109.8 1200

where 256243 is a diatonic semitone (Pythagorean limma) and 21872048 is a chromatic semitone (Pythagorean apotome).

The chromatic scale in Pythagorean tuning can be tempered to the 17-EDO tuning (P5 = 10 steps = 705.88 cents).

Just intonation

In 5-limit just intonation the chromatic scale, Ptolemy's intense chromatic scale[citation needed], is as follows, with flats higher than their enharmonic sharps, and new notes between E–F and B–C (cents rounded to one decimal):

C C D D D E E E/F F F G G G A A A B B B/C C
Pitch ratio 1 2524 1615 98 7564 65 54 3225 43 2518 3625 32 2516 85 53 12572 95 158 4825 2
Cents 0 70.7 111.7 203.9 274.6 315.6 386.3 427.4 498 568.7 631.3 702 772.6 813.7 884.4 955 1017.6 1088.3 1129.3 1200

The fractions 98 and 109, 65 and 3227, 54 and 8164, 43 and 2720, and many other pairs are interchangeable, as 8180 (the syntonic comma) is tempered out.[clarification needed]

Just intonation tuning can be approximated by 19-EDO tuning (P5 = 11 steps = 694.74 cents).

Non-Western cultures

The ancient Chinese chromatic scale is called Shí-èr-lǜ. However, "it should not be imagined that this gamut ever functioned as a scale, and it is erroneous to refer to the 'Chinese chromatic scale', as some Western writers have done. The series of twelve notes known as the twelve were simply a series of fundamental notes from which scales could be constructed."[8] However, "from the standpoint of tonal music [the chromatic scale] is not an independent scale, but derives from the diatonic scale,"[2] making the Western chromatic scale a gamut of fundamental notes from which scales could be constructed as well.

See also

Notes

  1. ^ As every chromatic scale is identical under transposition, inversion, and retrograde to every other.

Sources

  1. ^ Jeans, James (1923). Science and Music. Cambridge University Press. pp. 24–25 – via Internet Archive.
  2. ^ a b c Forte, Allen, Tonal Harmony, third edition (S.l.: Holt, Rinehart, and Wilson, 1979): pp. 4–5. ISBN 0-03-020756-8.
  3. ^ Piston, Walter (1987/1941). Harmony, p. 5. 5th ed. revised by DeVoto, Mark. W. W. Norton, New York/London. ISBN 0-393-95480-3.
  4. ^ a b Benward, Bruce; Saker, Marilyn Nadine (2003). Music in Theory and Practice. Vol. I (7th ed.). McGraw-Hill. p. 37. ISBN 978-0-07-294262-0.
  5. ^ Benward & Saker (2003). "Glossary", p. 359.
  6. ^ Kamien, Roger (1990). Music: An Appreciation, p. 44. Brief edition. McGraw-Hill. ISBN 0-07-033568-0.
  7. ^ McCartin, Brian J. (November 1998). "Prelude to Musical Geometry". The College Mathematics Journal. 29 (5): 354–370 (364). doi:10.1080/07468342.1998.11973971. JSTOR 2687250.
  8. ^ Needham, Joseph (1962/2004). Science and Civilization in China, Vol. IV: Physics and Physical Technology, pp. 170–171. ISBN 978-0-521-05802-5.

Further reading

  • Hewitt, Michael. 27 January 2013. Musical Scales of the World. The Note Tree. ISBN 978-0957547001

Read other articles:

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: National Conference of State Legislatures – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this template message) National Conference of State LegislaturesAbbreviationNCSLFormation1975Typenon-governmental organizationLoca...

 

Ukrainische Meisterschaft 2004 Austragungsort: BK Bingo,Kiew, Ukraine Eröffnung: 27. Oktober 2004 Endspiel: 31. Oktober 2004 Sieger: Hryhorij Chymotschka Finalist: Bohdan Moltschanow  2005 → Die ukrainische Snooker-Meisterschaft 2004 war ein Snookerturnier, das vom 27. bis 31. Oktober 2004 im BK Bingo in der ukrainischen Hauptstadt Kiew stattfand.[1] Ukrainischer Meister wurde Hryhorij Chymotschka, der im Finale Bohdan Moltschanow mit 4:1 besiegte. Den dritten Platz belegt...

 

De gemeente Edam-Volendam heeft 157 gemeentelijke monumenten, hieronder een overzicht. Zie ook de rijksmonumenten in Edam-Volendam. Edam De plaats Edam kent 95 gemeentelijke monumenten, zie de lijst van gemeentelijke monumenten in Edam Oosthuizen De plaats Oosthuizen kent 1 gemeentelijk monument: Object Bouwjaar Architect Locatie Coördinaten Nr. Afbeelding  Het Schooltje van Dik Trom 1905 Circa 1905 Etersheim 8a 52° 35' 1 NB, 5° 1' 9 OL 0385/WN065 Het Sch...

73rd Pursuit Squadron redirects here. For the 73rd Pursuit Squadron (Interceptor), see 73rd Bombardment Squadron. 73rd Special Operations SquadronAC-130JActive1918–2015; 2018–Country United StatesBranch United States Air ForceTypeSquadronPart of1st Special Operations Wing > 1st Special Operations GroupGarrison/HQHurlburt FieldMotto(s)Without FailEngagementsWorld War I Toul sector streamer, France, 31 October – 11 November 1918[1] World War II Aleutian CampaignD...

 

Die Liste der Monuments historiques in Courcelles-Chaussy führt die Monuments historiques in der französischen Gemeinde Courcelles-Chaussy auf. Liste der Bauwerke Bezeichnung Beschreibung Standort Kenn­zeichnung Schutz­status Datum Bild Château de Landonvillers Herrenhaus, 1903 bis 1905 durch Bodo Ebhardt umgestaltet Landonvillers, 30 allée des Tilleuls(Lage) PA57000008 Inscrit 1997 Weblinks Commons: Courcelles-Chaussy – Sammlung von Bildern, Videos und Audiodateien Monum...

 

Fictional prose narrative form This article is about the literary form. For other uses, see Novella (disambiguation). Literature Oral literature Folklore Fable Fairy tale Folk play Folksong Heroic epic Legend Myth Proverb Oration Performance Audiobook Spoken word Saying Major written forms Drama Closet drama Poetry Lyric Narrative Nonsense Prose Long prose fiction Anthology Serial Novel/Romance Short prose fiction Novella Novelette Short story Sketch Flash fiction Parable • Rel...

Basketball player selection This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2016) (Learn how and when to remove this template message) 1987 NBA draftGeneral informationSportBasketballDate(s)June 22, 1987LocationFelt Forum (New York City, New York)Network(s)TBS SuperstationOverview161 total selections in 7 roundsLeagueNBAFirst selectionDavid Robinson ...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Female Prince – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this template message) 1964 Hong Kong filmThe Female PrinceTheatrical posterDirected byChow Sze-LokeWritten byChang ChehProduced byRun Me ShawStarringIvy Ling PoChin HanChin ...

 

Hindu goddess of misfortune JyesthaGoddess of Adversity and MisfortuneJyestha, Kailash temple, Kanchipuram.[1]Devanagariज्येष्ठाSanskrit transliterationJyeṣṭhāAffiliationDeviMountDonkeyPersonal informationSiblingsLakshmiConsortSage Dussaha Jyestha or Jyeshtha (Sanskrit: ज्येष्ठा, Jyeṣṭhā, the eldest or the elder) is the Hindu goddess of adversity and misfortune.[2] She is regarded as the elder sister and antithesis of Lakshmi, the godd...

Domingo Vásquez Domingo Vásquez (August 3, 1846 – December 11, 1909) was President of Honduras 7 August 1893 – 22 February 1894. He lost power as a result of Honduras being defeated in a war with Nicaragua and was replaced by Policarpo Bonilla.[1] References ^ Scheina, Robert L. (31 January 2003). Latin America's Wars. Potomac Books, Inc. p. 1818. ISBN 978-1-59797-477-6. Further reading The Five Central American Republics, p. 123 Political offices Preceded byPonci...

 

1952 film Dancing StarsGerman film posterGermanTanzende Sterne Directed byGéza von CziffraWritten byGéza von CziffraProduced byOtto MeissnerGéza von CziffraStarringGermaine DamarGeorg ThomallaFita BenkhoffCinematographyGeorg BruckbauerEdited byAlice LudwigMusic byMichael JaryProductioncompanyArion-FilmDistributed byHerzog-FilmverleihRelease date 27 November 1952 (1952-11-27) Running time94 minutesCountryWest GermanyLanguageGerman Dancing Stars (German: Tanzende Sterne) is a ...

 

Salto em distância feminino nosJogos Pan-Americanos de 2023 Santiago, Chile Dados Sede Estádio Nacional, Santiago Data 30 de outubro de 2023 Participantes 9 de 7 CONs Medalhistas Ouro COL Natalia Linares Prata BRA Eliane Martins Bronze USA Tiffany Flynn ←  2019 2027  → Atletismo nosJogos Pan-Americanos de 2023 Qualificação Provas de pista 100 m   masc   fem   200 m   masc   fem   400 m   masc   fem   800 m &...

United States utility company This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Evergy – news · newspapers · books · scholar · JSTOR (May 2015) (Learn how and when to remove this template message) EvergyTypePublicTraded asNYSE: EVRGS&P 500 componentIndustryElectric utilityPredecessorCompany formed wit...

 

Tercera División RFEF de FútSalDatos generalesDeporte Fútbol salaSede España EspañaContinente UEFADatos históricosFundación 1989Datos de competencia Ascenso a Segunda División B de fútbol sala Descenso a Divisiones regionales de fútbol sala de España[editar datos en Wikidata] La Tercera División RFEF de FútSal (hasta la temporada 2010-2011 se llamaba Primera Nacional B) es la cuarta división del fútbol sala español. Es la inmediatamente inferior a la Segunda Div...

 

Eléctrico FCDatos generalesNombre Eléctrico Futebol ClubeFundación 1929Presidente Américo Farinha PereiraEntrenador Amândio BarreirasInstalacionesEstadio Municipal de Ponte de SôrCapacidad 1,500Ubicación Ponte de Sôr, Portugal Titular Alternativo Última temporadaLiga Campeonato de Portugal - Grupo D(2017-18) 15º Página web oficial[editar datos en Wikidata] El Eléctrico FC es un equipo de fútbol de Portugal que forma parte de la Liga Regional de Portalegre, la cuarta lig...

Moroccan-born middle distance runner for Bahrain Rashid Ramzi Rashid Ramzi with his silver medal for the men's 1500 metres at the 2007 World Championships in Athletics Medal record Representing  Bahrain Men's athletics Summer Olympics Disqualified 2008 Beijing 1500 m World Championships 2005 Helsinki 800 m 2005 Helsinki 1500 m 2007 Osaka 1500 m Asian Games 2002 Busan 1500 m 2006 Doha 1500 m 2014 Incheon 1500 m Rashid Ramzi (Arabic: رشيد رمزي) (born July 17, 1980[1]) is a ...

 

Albert Reiß Albert Reiß/Albert Reiss, (Berlín, 22 de febrero de 1870-Niza, 19 de junio de 1940) fue un tenor y actor teatral alemán conocido por actuar en el Teatro Nacional de Múnich, la Royal Opera House de Londres o en la Metropolitan Opera de Nueva York más de 1000 veces.[1]​ Estudió derecho, pero más tarde trabajó como actor en Berlín y Estrasburgo. Se formó como cantante lírico con Otto Ball, Otto Purschian o Ludwig Stahl debutando en 1897 con Zar y carpintero. Referen...

 

1950 Looney Tunes short directed by Friz Freleng Bunker Hill BunnyLobby cardDirected byI. FrelengStory byTedd PierceProduced byEdward Selzer(uncredited)StarringMel BlancMusic byCarl StallingAnimation byGerry Chiniquy Ken Champin Virgil Ross Arthur DavisMorey Reden (uncredited)Layouts byHawley PrattBackgrounds byPaul JulianColor processTechnicolorDistributed byWarner Bros. Pictures The Vitaphone CorporationRelease date September 23, 1950 (1950-09-23) (United States) Running ...

Riau Malaysملايو رياوTraditional Riau Wedding DressRegions with significant populations Riau •  Riau Islands •  North Sumatra •  Jambi •  Bengkulu (Indonesia)  Johor •  Malacca (Malaysia) Indonesia2,610,890 Malaysia116,000LanguagesRiau Malay, IndonesianReligionSunni IslamRelated ethnic groupsMalays Riau Malays (Jawi: ملايو رياو, Melayu Riau) is a Malays sub...

 

Northern Ireland Fire and Rescue ServiceWilayah operasiNegaraIrlandia UtaraIkhtisarBerdiri01 Oktober 1973 (1973-10-01)Panggilan/tahun36.069 (2016/2017)Personel2.230Facilities and equipmentDivisi4Stasiun68Situs webSitus web resmi Northern Ireland Fire and Rescue Service (NIFRS) (dulu Northern Ireland Fire Brigade) adalah dinas pemadam kebakaran resmi di Irlandia Utara. NIFRS diawasi oleh Northern Ireland Fire and Rescue Service Board yang berada di bawah Departemen Kesehatan. NIFRS mempek...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!