Star polygon

Two types of star pentagons

{5/2}

|5/2|
A regular star pentagon, {5/2}, has five vertices (its corner tips) and five intersecting edges, while a concave decagon, |5/2|, has ten edges and two sets of five vertices. The first is used in definitions of star polyhedra and star uniform tilings, while the second is sometimes used in planar tilings.

Small stellated dodecahedron

Tessellation

In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple or star polygons.

Branko Grünbaum identified two primary usages of this terminology by Johannes Kepler, one corresponding to the regular star polygons with intersecting edges that do not generate new vertices, and the other one to the isotoxal concave simple polygons.[1]

Polygrams include polygons like the pentagram, but also compound figures like the hexagram.

One definition of a star polygon, used in turtle graphics, is a polygon having q ≥ 2 turns (q is called the turning number or density), like in spirolaterals.[2]

Names

Star polygon names combine a numeral prefix, such as penta-, with the Greek suffix -gram (in this case generating the word pentagram). The prefix is normally a Greek cardinal, but synonyms using other prefixes exist. For example, a nine-pointed polygon or enneagram is also known as a nonagram, using the ordinal nona from Latin.[citation needed] The -gram suffix derives from γραμμή (grammḗ), meaning a line.[3] The name star polygon reflects the resemblance of these shapes to the diffraction spikes of real stars.

Regular star polygon


{5/2}

{7/2}

{7/3}
...
Regular convex and star polygons with 3 to 12 vertices, labeled with their Schläfli symbols

A regular star polygon is a self-intersecting, equilateral, and equiangular polygon.

A regular star polygon is denoted by its Schläfli symbol {p/q}, where p (the number of vertices) and q (the density) are relatively prime (they share no factors) and where q ≥ 2. The density of a polygon can also be called its turning number: the sum of the turn angles of all the vertices, divided by 360°.

The symmetry group of {p/q} is the dihedral group Dp, of order 2p, independent of q.

Regular star polygons were first studied systematically by Thomas Bradwardine, and later Johannes Kepler.[4]

Construction via vertex connection

Regular star polygons can be created by connecting one vertex of a regular p-sided simple polygon to another vertex, non-adjacent to the first one, and continuing the process until the original vertex is reached again.[5] Alternatively, for integers p and q, it can be considered as being constructed by connecting every qth point out of p points regularly spaced in a circular placement.[6] For instance, in a regular pentagon, a five-pointed star can be obtained by drawing a line from the 1st to the 3rd vertex, from the 3rd to the 5th vertex, from the 5th to the 2nd vertex, from the 2nd to the 4th vertex, and from the 4th to the 1st vertex.

If qp/2, then the construction of {p/q} will result in the same polygon as {p/(pq)}; connecting every third vertex of the pentagon will yield an identical result to that of connecting every second vertex. However, the vertices will be reached in the opposite direction, which makes a difference when retrograde polygons are incorporated in higher-dimensional polytopes. For example, an antiprism formed from a prograde pentagram {5/2} results in a pentagrammic antiprism; the analogous construction from a retrograde "crossed pentagram" {5/3} results in a pentagrammic crossed-antiprism. Another example is the tetrahemihexahedron, which can be seen as a "crossed triangle" {3/2} cuploid.

Degenerate regular star polygons

If p and q are not coprime, a degenerate polygon will result with coinciding vertices and edges. For example, {6/2} will appear as a triangle, but can be labeled with two sets of vertices: 1-3 and 4-6. This should be seen not as two overlapping triangles, but as a double-winding single unicursal hexagon.[7][8]

Construction via stellation

Alternatively, a regular star polygon can also be obtained as a sequence of stellations of a convex regular core polygon. Constructions based on stellation also allow regular polygonal compounds to be obtained in cases where the density q and amount p of vertices are not coprime. When constructing star polygons from stellation, however, if q > p/2, the lines will instead diverge infinitely, and if q = p/2, the lines will be parallel, with both resulting in no further intersection in Euclidean space. However, it may be possible to construct some such polygons in spherical space, similarly to the monogon and digon; such polygons do not yet appear to have been studied in detail.

Isotoxal star simple polygons

When the intersecting line segments are removed from a regular star n-gon, the resulting figure is no longer regular, but can be seen as an isotoxal concave simple 2n-gon, alternating vertices at two different radii. Branko Grünbaum, in Tilings and patterns, represents such a star that matches the outline of a regular polygram {n/d} as |n/d|, or more generally with {n𝛼}, which denotes an isotoxal concave or convex simple 2n-gon with outer internal angle 𝛼.

  • For |n/d|, the outer internal angle 𝛼 = 180(1 − 2d/n) degrees, necessarily, and the inner (new) vertices have an external angle βext = 180[1 − 2(d − 1)/n] degrees, necessarily.
  • For {n𝛼}, the outer internal and inner external angles, also denoted by 𝛼 and βext, do not have to match those of any regular polygram {n/d}; however, 𝛼 < 180(1 − 2/n) degrees and βext < 180°, necessarily (here, {n𝛼} is concave).[1]
Examples of isotoxal star simple polygons
|n/d|
{n𝛼}
|9/4|
{920°}
 
{330°}
 
{630°}
|5/2|
{536°}
 
{445°}
|8/3|
{845°}
|6/2|
{660°}
 
{572°}
𝛼 20° 30° 36° 45° 60° 72°
βext 60° 150° 90° 108° 135° 90° 120° 144°
Isotoxal
simple
n-pointed
star
Related
regular
polygram
{n/d}

{9/4}

{12/5}

{5/2}

{8/3}

2{3}
Star figure

{10/3}

Examples in tilings

These polygons are often seen in tiling patterns. The parametric angle 𝛼 (in degrees or radians) can be chosen to match internal angles of neighboring polygons in a tessellation pattern. In his 1619 work Harmonices Mundi, among periodic tilings, Johannes Kepler includes nonperiodic tilings, like that with three regular pentagons and one regular star pentagon fitting around certain vertices, 5.5.5.5/2, and related to modern Penrose tilings.[9]

Examples of isogonal tilings with isotoxal simple stars[10]
Isotoxal simple
n-pointed stars
"Triangular" stars
(n = 3)
"Square" stars
(n = 4)
"Hexagonal" stars
(n = 6)
"Octagonal" stars
(n = 8)
Image of tiling
Vertex config. 3.3*
𝛼
.3.3**
𝛼
8.4*
π/4
.8.4*
π/4
6.6*
π/3
.6.6*
π/3
3.6*
π/3
.6**
π/3
3.6.6*
π/3
.6
not edge-to-edge

Interiors

The interior of a star polygon may be treated in different ways. Three such treatments are illustrated for a pentagram. Branko Grünbaum and Geoffrey Shephard consider two of them, as regular star n-gons and as isotoxal concave simple 2n-gons.[9]

These three treatments are:

  • Where a line segment occurs, one side is treated as outside and the other as inside. This is shown in the left hand illustration and commonly occurs in computer vector graphics rendering.
  • The number of times that the polygonal curve winds around a given region determines its density. The exterior is given a density of 0, and any region of density > 0 is treated as internal. This is shown in the central illustration and commonly occurs in the mathematical treatment of polyhedra. (However, for non-orientable polyhedra, density can only be considered modulo 2 and hence, in those cases, for consistency, the first treatment is sometimes used instead.)
  • Wherever a line segment may be drawn between two sides, the region in which the line segment lies is treated as inside the figure. This is shown in the right hand illustration and commonly occurs when making a physical model.

When the area of the polygon is calculated, each of these approaches yields a different result.

In art and culture

Star polygons feature prominently in art and culture. Such polygons may or may not be regular, but they are always highly symmetrical. Examples include:


An {8/3} octagram constructed in a regular octagon

Seal of Solomon with circle and dots (star figure)

See also

References

  1. ^ a b Grünbaum & Shephard (1987). Tilings and Patterns. Section 2.5
  2. ^ Abelson, Harold, diSessa, Andera, 1980, Turtle Geometry, MIT Press, p. 24
  3. ^ γραμμή, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  4. ^ Coxeter, Introduction to Geometry, second edition, 2.8 Star polygons, pp. 36–38
  5. ^ Coxeter, Harold Scott Macdonald (1973). Regular polytopes. Courier Dover Publications. p. 93. ISBN 978-0-486-61480-9.
  6. ^ Weisstein, Eric W. "Star Polygon". MathWorld.
  7. ^ Are Your Polyhedra the Same as My Polyhedra? Archived 2016-08-03 at the Wayback Machine, Branko Grünbaum
  8. ^ Coxeter, The Densities of the Regular Polytopes I, p. 43:
    If q is odd, the truncation of {p/q} is naturally {2p/q}. But if q is even, the truncation of {p/q} consists of two coincident {p/(q/2)}'s; two, because each side arises once from an original side and once from an original vertex. Since 2(q/2) = q, the density of a polygon is never altered by truncation.
  9. ^ a b Branko Grunbaum and Geoffrey C. Shephard, Tilings by Regular Polygons, Mathematics Magazine #50 (1977), pp. 227–247, and #51 (1978), pp. 205–206
  10. ^ Tiling with Regular Star Polygons, Joseph Myers
  11. ^ Broug, Eric (2008-05-27). Islamic Geometric Patterns. London: Thames and Hudson. pp. 183–185, 193. ISBN 978-0-500-28721-7.
  • Cromwell, P.; Polyhedra, CUP, Hbk. 1997, ISBN 0-521-66432-2. Pbk. 1999, ISBN 0-521-66405-5. p. 175
  • Grünbaum, B. and G. C. Shephard; Tilings and Patterns, New York: W. H. Freeman & Co. (1987), ISBN 0-7167-1193-1.
  • Grünbaum, B.; Polyhedra with Hollow Faces, Proc of NATO-ASI Conference on Polytopes ... etc. (Toronto, 1993), ed. T. Bisztriczky et al., Kluwer Academic (1994), pp. 43–70.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things, 2008, ISBN 978-1-56881-220-5 (Chapter 26, p. 404: Regular star-polytopes Dimension 2)
  • Branko Grünbaum, Metamorphoses of polygons, published in The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History (1994)

Hart, Vi (2010). "Doodling in Math Class: Stars". YouTube.

Read other articles:

För den finländske diplomaten och författaren, se René Nyberg (diplomat). Renée Nyberg Renée Nyberg på Kristallen-galan 2013.Född17 maj 1966 (57 år)Vantörs församling, Stockholm,  SverigeNationalitetSvenskYrke/uppdragProgramledareÅr som aktiv1992–Känd förRenées bryggaMakeDavid Hellenius (2009– )Barn3 Renée Nyberg besöker Sommarkrysset 2009. Eva Renée Agneta Nyberg,[a] född 17 maj 1966 i Vantörs församling i Stockholm,[1] är en svensk programl...

 

Mniejszość seksualna Mniejszość seksualna – odsetek społeczeństwa o orientacji seksualnej innej, niż dominująca statystycznie. Według różnych szacunków od 1% do 21% populacji USA jest orientacji homoseksualnej lub biseksualnej[1]. Badania przeprowadzone w roku 1970 w Stanach Zjednoczonych wykazały, że około 20% dorosłych mężczyzn miało kontakt z mężczyzną prowadzący do orgazmu, jednak tylko 6,7% po 19 roku życia i kontakty połowy z 6,7% były rzadkie[2]. Przykładem...

 

Mallemort Mallemort (Frankreich) Staat Frankreich Region Provence-Alpes-Côte d’Azur Département (Nr.) Bouches-du-Rhône (13) Arrondissement Aix-en-Provence Kanton Pélissanne Gemeindeverband Métropole d’Aix-Marseille-Provence Koordinaten 43° 44′ N, 5° 11′ O43.7316666666675.1802777777778Koordinaten: 43° 44′ N, 5° 11′ O Höhe 99–225 m Fläche 28,16 km² Einwohner 6.184 (1. Januar 2020) Bevölkerungsdichte 220 Einw./km²...

American politician John C. MackieMember of the U.S. House of Representativesfrom Michigan's 7th districtIn officeJanuary 3, 1965 – January 3, 1967Preceded byJames G. O'HaraSucceeded byDonald Riegle9th Michigan State Highway CommissionerIn officeJuly 1, 1957 – January 4, 1965GovernorG. Mennen WilliamsJohn SwainsonGeorge W. RomneyPreceded byCharles M. ZieglerSucceeded byOffice abolished(Howard E. Hill, first MDSH Director) Personal detailsBorn(1920-06-01)June ...

 

Erwanto KurniadiInformasi pribadiLahirApril 1967JakartaMeninggal17 Mei 2019JakartaKarier militerPihak IndonesiaDinas/cabang Kepolisian Negara Republik IndonesiaMasa dinas1989–2019Pangkat Brigadir Jenderal PolisiSatuanReserseSunting kotak info • L • B Brigjen Pol. (Purn.) Drs. Erwanto Kurniadi, S.H., M.H. (lahir di Jakarta, April 1967 – meninggal di Jakarta, 17 Mei 2019) adalah seorang perwira tinggi Polri yang terakhir kali sebelum meninggal menjabat sebagai Dirtip...

 

Henning Schulzrinne Schulzrinne at the SIPNOC 2012.Información personalNacimiento Siglo XX Colonia, AlemaniaNacionalidad AlemanaEducaciónEducado en Universidad de ColumbiaSupervisor doctoral Jim Kurose Información profesionalÁrea Redes informáticasConocido por RTSP, SIPEmpleador Universidad de Columbia Obras notables Session Initiation ProtocolReal-time Transport Protocol Sitio web www.cs.columbia.edu/~hgs Distinciones Salón de la Fama de Internet (2013)ACM Fellow (2014) ...

المحكمة الدستورية لروسيا الاتحادية تعديل مصدري - تعديل   59°56′07″N 30°18′05″E / 59.93528°N 30.30139°E / 59.93528; 30.30139 جزء من سلسلة مقالات سياسة روسياروسيا الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس مجلس الوزراء الحكومة السلطة التشريعية الجمعية الاتحادية مجلس ال...

 

الحبيبات الفائقة في الكروموسفير للشمس الحبيبات الشمسية الفائقة هو نمط معين من خلايا الحمل الحراري على سطح الشمس. اكتشف في سنة 1950 من قبل أجهزة تستعمل قياسات سرعة دوبلر والتي أظهرت تدفقات أفقية على الغلاف الضوئي (سرعة التدفق نحو 300 إلى 500 متر / ثانية). أظهرت أعمال لاحقة في سنة 19...

 

United States historic placeJordan Village Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district The 1838 Beebe Phillips house (left) and the 1740 Jordan Schoolhouse on Jordan GreenShow map of ConnecticutShow map of the United StatesLocationJunction of North Rd. and Avery Ln. with Rope Ferry Rd., Waterford, ConnecticutCoordinates41°20′23″N 72°8′33″W / 41.33972°N 72.14250°W / 41.33972; -72.14250Area57 acres (23 ha)Built1848Arc...

1959 film by B. R. Panthulu For the 1993 film, see Kattabomman (film). Veerapandiya KattabommanTheatrical release posterDirected byB. R. PanthuluStory bySakthi T. K. KrishnasamyBased onVeerapandiya Kattabomman (play)Produced byB. R. PanthuluStarring Sivaji Ganesan Gemini Ganesan Padmini S. Varalakshmi Ragini CinematographyW. R. SubbaraoEdited byR. DevarajanMusic byG. RamanathanProductioncompanyPadmini PicturesDistributed bySivaji FilmsRelease dates 10 May 1959 (1959-05-10) ...

 

The Most HonourableThe Marquess of LinlithgowKT GCMG GCVO PCGubernur Jenderal Australia ke-1Masa jabatan1 Januari 1901 – 17 Juli 1902Penguasa monarkiVictoriaEdward VIIPerdana MenteriEdmund BartonPendahuluPosisi baruPenggantiLord TennysonGubernur Victoria ke-7Masa jabatan28 November 1889 – 12 Juli 1895Perdana MenteriDuncan Gillies James Munro William Shiels James Patterson George TurnerPendahuluLord LochPenggantiLord BrasseySekretaris SkotlandiaMasa jabatan2 Febru...

 

Malay island kingdom For the current republic, see Singapore. Kingdom of SingapuraKerajaan Singapura1299–1398Kingdom of Singapore, with ruins of an old wall still visible in 1825 and marked on this map.CapitalSingapura[1]Common languagesOld MalayReligion Syncretic forms of Hinduism and BuddhismGovernmentMonarchyRaja • 1299–1347 Sang Nila Utama (Sri Tri Buana)• 1347–1362 Sri Wikrama Wira• 1362–1375 Sri Rana Wikrama• 1375–1389 Sri Maharaja...

Distribuição de NRHPs nos condados de Indiana. Edifícios, locais, distritos e objetos no Registro Nacional de Lugares Históricos en Indiana. Desde 7 de fevereiro de 2014[1] existem 1 822 propriedades e distritos do Registro Nacional de Lugares Históricos listados nos 92 condados de Indiana, incluindo os 39 nomeados no Marco Histórico Nacional. O condado de Marion é o que contem a maior quantidade de registros, enquanto outros três condados possuem apenas um registro cada um. Os p...

 

This article is about the comedy film from 1995 in the United States. For other uses, see House guest (disambiguation). 1995 American filmHouseguestPromotional movie posterDirected byRandall MillerWritten byMichael J. Di GaetanoLawrence GayProduced byJoe RothRoger BirnbaumStarring Sinbad Phil Hartman Jeffrey Jones Kim Greist CinematographyJerzy ZielinskiEdited byEric SearsMusic byJohn DebneyProductioncompaniesHollywood PicturesCaravan PicturesDistributed byBuena Vista Pictures DistributionRel...

 

Jehanabad Assembly constituencyConstituency No. 216 for the Bihar Legislative AssemblyConstituency detailsCountryIndiaRegionEast IndiaStateBiharDistrictJehanabadLS constituency36 JehanabadMember of Legislative Assembly17th Bihar Legislative AssemblyIncumbent Suday Yadav PartyRashtriya Janata DalElected year2020 Assembly constituency in Bihar, India Jehanabad Assembly constituency is an assembly constituency in Jehanabad district and South Bihar region of Bihar. It is the part of Jahanabad (Lo...

This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (June 2017) (Learn how and when to remove this template message) 2017 USAC National Midget Series Previous 2016 Next 2018 champion Spencer Bayston The 2017 USAC National Midget Series is the 62nd season of the USAC National Midget Series. The series began with the Shamrock Classic at Southern Illinois Center on March 18, and will end with ...

 

A studio founded by Walt Disney Laugh-O-Gram StudioMcConahay Films Building in August 2010IndustryFilm studioPredecessorsIwerks-Disney Commercial ArtistsFoundedJune 28, 1921; 102 years ago (June 28, 1921)FounderWalt DisneyDefunctOctober 16, 1923; 100 years ago (October 16, 1923)FateBankruptcySuccessorsDisney Brothers Cartoon StudioHeadquarters Kansas City, Missouri 39°04′13″N 94°34′12″W / 39.070362°N 94.56994°W / 39.070362; -94.569...

 

1986 film by Blake Edwards This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: That's Life! film – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this template message) That's Life!Theatrical release posterDirected byBlake EdwardsWritten byBlake EdwardsMilton Wexle...

Football clubMartos CDFull nameMartos Club DeportivoFounded1970GroundEstadio Municipal Ciudad de Martos Martos, SpainCapacity5,000ManagerFernando CamposLeagueDivisión de Honor Andaluza – Group 22022–23División de Honor Andaluza – Group 2, 8th Home colours Away colours Martos Club Deportivo is a Spanish football club, founded in 1970 and based in Martos. The club competes in División de Honor Andaluza, holding home games at the Estadio Municipal Ciudad de Martos, with a capacity of 5,...

 

2003 compilation album by Ghostface KillahShaolin's FinestCompilation album by Ghostface KillahReleasedApril 1, 2003 [1]Recorded1996-2001GenreHip hop[2]Length47:00LabelEpic[1]Ghostface Killah chronology Bulletproof Wallets(2001) Shaolin's Finest(2003) 718(2004) Professional ratingsReview scoresSourceRatingAllMusic [3]Spin(6/10) [4] Shaolin's Finest is a compilation album by American rapper Ghostface Killah, featuring singles from the albums Iron...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!