Share to: share facebook share twitter share wa share telegram print page

Gruppe (Mathematik)

Die Drehungen eines Zauberwürfels bilden eine Gruppe.

In der Mathematik ist eine Gruppe eine Menge von Elementen zusammen mit einer Verknüpfung, die je zwei Elementen der Menge ein drittes Element derselben Menge zuordnet und dabei drei Bedingungen, die Gruppenaxiome, erfüllt: das Assoziativgesetz, die Existenz eines neutralen Elements und die Existenz von inversen Elementen.

Eine der bekanntesten Gruppen ist die Menge der ganzen Zahlen mit der Addition als Verknüpfung. Das mathematische Teilgebiet, das sich der Erforschung der Gruppenstruktur widmet, wird Gruppentheorie genannt. Es ist ein Teilgebiet der Algebra. Die Anwendungsgebiete der Gruppen, auch außerhalb der Mathematik, machen sie zu einem zentralen Konzept der gegenwärtigen Mathematik.[1]

Gruppen teilen eine fundamentale Verwandtschaft mit der Idee der Symmetrie. Beispielsweise verkörpert die Symmetriegruppe eines geometrischen Objekts dessen symmetrische Eigenschaften. Sie besteht aus der Menge derjenigen Abbildungen (z. B. Drehungen), die das Objekt unverändert lassen, und der Hintereinanderausführung solcher Abbildungen als Verknüpfung. Lie-Gruppen sind die Symmetriegruppen des Standardmodells der Teilchenphysik, Punktgruppen werden genutzt, um in der Chemie Symmetrie auf molekularer Ebene zu verstehen, und Poincaré-Gruppen können die Symmetrien ausdrücken, die der speziellen Relativitätstheorie zugrunde liegen.

Das Konzept der Gruppe entstand aus Évariste Galois’ Untersuchungen von Polynomgleichungen in den 1830er Jahren.[2] Nach Beiträgen aus anderen mathematischen Gebieten wie der Zahlentheorie und der Geometrie wurde der Begriff der Gruppe verallgemeinert. Um 1870 war er fest etabliert und wird heute in dem eigenständigen Gebiet der Gruppentheorie behandelt. Um Gruppen zu erforschen, haben Mathematiker spezielle Begriffe entwickelt, um Gruppen in kleinere, leichter verständliche Bestandteile zu zerlegen, wie z. B. Untergruppen, Faktorgruppen und einfache Gruppen. Neben ihren abstrakten Eigenschaften untersuchen Gruppentheoretiker auch Möglichkeiten, wie Gruppen konkret ausgedrückt werden können (Darstellungstheorie), sowohl für theoretische Untersuchungen als auch für konkrete Berechnungen. Eine besonders reichhaltige Theorie wurde für die endlichen Gruppen entwickelt, was 1983 in der Klassifizierung der endlichen einfachen Gruppen gipfelte. Diese spielen für Gruppen eine vergleichbare Rolle wie die Primzahlen für natürliche Zahlen.

Einführendes Beispiel

Eine der bekanntesten Gruppen bildet die Menge der ganzen Zahlen , die üblicherweise mit bezeichnet wird, zusammen mit der Addition.

Die Menge der ganzen Zahlen zusammen mit der Addition erfüllt einige grundlegende Eigenschaften:

  • Für zwei ganze Zahlen und ist die Summe wieder eine ganze Zahl. Würde man hingegen zwei ganze Zahlen miteinander dividieren, so wäre das Ergebnis zumeist eine rationale Zahl und keine ganze Zahl mehr. Da dies bei der Addition nicht passieren kann, sagt man, dass die ganzen Zahlen unter der Addition abgeschlossen sind.
  • Für alle ganzen Zahlen , und gilt das Assoziativgesetz
.
In Worten ausgedrückt heißt dies, dass es egal ist, ob man zuerst und oder und addiert, das Ergebnis ist dasselbe. Diese Eigenschaft wird Assoziativität genannt.
  • Für jede ganze Zahl gilt
.
Die Addition mit Null verändert also die Ausgangszahl nicht. Daher nennt man Null das neutrale Element der Addition.
  • Für jede ganze Zahl existiert eine ganze Zahl , so dass gilt. Das heißt, zu jeder ganzen Zahl existiert eine ganze Zahl , so dass ihre Summe null ergibt. Die Zahl heißt in diesem Fall das inverse Element von und wird mit notiert.

Diese vier Eigenschaften der Menge der ganzen Zahlen zusammen mit ihrer Addition werden in der Definition der Gruppe auf andere Mengen mit einer passenden Operation verallgemeinert.

Definitionen

Gruppe

Eine Gruppe ist ein geordnetes Paar bestehend aus einer Menge und einer inneren zweistelligen Verknüpfung auf . Dabei erfüllt die (in Infixnotation geschriebene) Abbildung

die folgenden, Gruppenaxiome genannten, Forderungen:[3]

  • Für alle , , gilt:
          .[4]
(Assoziativität)
  • Es gibt ein (einziges) neutrales Element , mit dem für alle gilt:
          .[5]
(Existenz des neutralen Elements)
  • Zu jedem existiert ein (einziges) inverses Element
          mit .[6]
(Existenz des inversen Elements)

Eine Gruppe ist also ein Monoid, in dem jedes Element ein Inverses hat.

Wenn eine Gruppe ist, heißen die Elemente der Menge Elemente der Gruppe, kurz Gruppenelemente.

Schwache Gruppenaxiome

Die Gruppenaxiome können formal abgeschwächt werden, indem man die Axiome für die Existenz des neutralen Elements und der inversen Elemente folgendermaßen ersetzt:

Es gibt ein , so dass gilt:

  • Für alle gilt: – hiermit heißt linksneutrales Element.
  • Zu jedem existiert ein mit – so ein Element heißt zum Element linksinverses Element (bezüglich des linksneutralen Elements ).

Diese formal schwächere Definition ist äquivalent zu der ursprünglichen Definition.[7]

Beweis  

Es erfülle die schwachen Gruppenaxiome. Dann existiert zu jedem Gruppenelement ein Linksinverses und besitzt wiederum ein Linksinverses . Also gilt , womit auch ein Rechtsinverses zu ist. Damit gilt dann auch , also ist auch ein rechtsneutrales Element und somit auch eine Gruppe gemäß der stärkeren Axiomatik. ∎

Gruppe als algebraische Struktur

Eine Gruppe kann auch als eine besondere algebraische Struktur definiert werden. Mit den schwachen Gruppenaxiomen erhält man dann:

Eine Gruppe ist ein Quadrupel bestehend aus einer Menge sowie einer assoziativen zweistelligen Verknüpfung auf , einer nullstelligen Verknüpfung und einer einstelligen Verknüpfung auf , sodass für jedes gilt und .

Abelsche Gruppe

Eine Gruppe heißt abelsch oder kommutativ, wenn zusätzlich das folgende Axiom erfüllt ist:

  • Kommutativität: Für alle Gruppenelemente und gilt .

Andernfalls, d. h., wenn es Gruppenelemente gibt, für die ist, heißt die Gruppe nicht-abelsch (oder nicht-kommutativ).

Gruppenordnung

Bei einer Gruppe wird die Mächtigkeit auch als Ordnung der Gruppe bezeichnet. Für eine endliche Gruppe ist die Ordnung also einfach die Anzahl der Gruppenelemente.

Ordnung eines Elementes

Die Ordnung eines Elementes ist definiert durch , wobei das neutrale Element der Gruppe repräsentiert.

Bemerkungen:

  • In jeder Gruppe hat genau das neutrale Element die Ordnung 1.
  • Für endliche Gruppen gilt:
(gesprochen: die Ordnung von teilt die Gruppenordnung )

Anmerkungen zur Notation

Häufig wird für die Verknüpfung das Symbol benutzt, man spricht dann von einer multiplikativ geschriebenen Gruppe. Das neutrale Element heißt dann Einselement und wird auch durch symbolisiert. Wie auch bei der gewöhnlichen Multiplikation üblich, kann in vielen Situationen der Malpunkt weggelassen werden. Für Verknüpfungen von mehreren Elementen wird dann auch das Produktzeichen verwendet. Für wird die -fache Verknüpfung eines Gruppenelements mit sich selbst als Potenz geschrieben und man definiert sowie .

Die Gruppeneigenschaften lassen sich auch additiv notieren, indem für die Verknüpfung das Symbol benutzt wird. Das neutrale Element heißt dann Nullelement und wird durch symbolisiert. Das zum Gruppenelement inverse Element wird in einer additiv geschriebenen Gruppe nicht durch , sondern durch symbolisiert. Eine -fache Summe wird hier mit bezeichnet und man setzt sowie . Eine abelsche Gruppe kann auf diese Weise als Modul über dem Ring der ganzen Zahlen aufgefasst werden. Üblich ist die additive Schreibweise nur bei abelschen Gruppen, während nicht abelsche oder beliebige Gruppen zumeist multiplikativ geschrieben werden.[8]

Ist die Verknüpfung aus dem Zusammenhang klar, so schreibt man für eine Gruppe häufig nur .

Wort

Seien Elemente einer Gruppe , wobei für erlaubt ist. Als Wort bezeichnet man jedes Produkt der Form

der Länge mit Exponenten .[9]

Beispiel: Seien Elemente einer Gruppe, dann sind

und

Wörter dieser Gruppe.

Häufig fasst man in der Notation sich wiederholende Exponenten zusammen. Beispielsweise kann das Wort

verkürzt als

notiert werden.

Beispiele

Im Folgenden werden einige Beispiele von Gruppen aufgeführt. So werden Gruppen von Zahlen, eine Gruppe mit genau einem Element und Beispiele von zyklischen Gruppen angeführt. Weitere Beispiele zu Gruppen finden sich in der Liste kleiner (endlicher) Gruppen.

Mengen von Zahlen

  • Die Menge der ganzen Zahlen zusammen mit der Addition bildet eine (abelsche) Gruppe. Zusammen mit der Multiplikation ist die Menge der ganzen Zahlen allerdings keine Gruppe (das inverse Element zu 2 wäre 1/2).
  • Die Menge der rationalen Zahlen beziehungsweise die Menge der reellen Zahlen ist zusammen mit der Addition eine Gruppe. Zusammen mit der Multiplikation sind die Mengen und ebenfalls Gruppen.

Die triviale Gruppe

Die Menge, die nur ein Element hat, kann als Gruppe aufgefasst werden. Da jede Gruppe ein neutrales Element hat, muss genau dieses eine Element dann als das neutrale Element aufgefasst werden. Dann gilt also . Mittels dieser Gleichheit können auch die restlichen Gruppenaxiome bewiesen werden. Die Gruppe mit genau einem Element wird die triviale Gruppe genannt.

Zyklische Gruppen

Eine zyklische Gruppe ist eine Gruppe, deren Elemente als Potenz eines ihrer Elemente dargestellt werden können. Unter Verwendung der multiplikativen Notation lauten die Elemente einer zyklischen Gruppe

,

wobei meint und das neutrale Element der Gruppe bezeichnet. Das Element wird Erzeuger oder Primitivwurzel der Gruppe genannt. In additiver Notation ist ein Element eine Primitivwurzel, wenn die Elemente der Gruppe durch

dargestellt werden können.

Die 6. komplexen Einheitswurzeln können als zyklische Gruppe aufgefasst werden.

Beispielsweise ist die im ersten Abschnitt betrachtete additive Gruppe der ganzen Zahlen eine zyklische Gruppe mit der Primitivwurzel . Diese Gruppe hat unendlich viele Elemente. Im Gegensatz dazu hat die multiplikative Gruppe der n-ten komplexen Einheitswurzeln endlich viele Elemente. Diese Gruppe besteht aus allen komplexen Zahlen , die die Gleichung

erfüllen. Die Gruppenelemente können als Eckpunkte eines regulären n-Ecks visualisiert werden. Für ist dies in der Grafik auf der rechten Seite geschehen. Die Gruppenoperation ist die Multiplikation der komplexen Zahlen. Im rechten Bild entspricht also die Multiplikation mit der Drehung des Polygons im Gegenuhrzeigersinn um .

Zyklische Gruppen haben die Eigenschaft, durch die Anzahl ihrer Elemente eindeutig bestimmt zu sein. Das heißt, zwei zyklische Gruppen mit jeweils Elementen sind isomorph, es kann also ein Gruppenisomorphismus zwischen diesen beiden Gruppen gefunden werden. Insbesondere sind also alle zyklischen Gruppen mit unendlich vielen Elementen isomorph zur zyklischen Gruppe der ganzen Zahlen.

Symmetrische Gruppen

Die symmetrische Gruppe besteht aus allen Permutationen (Vertauschungen) einer -elementigen Menge. Die Gruppenoperation ist die Komposition (Hintereinanderausführung) der Permutationen, das neutrale Element ist die identische Abbildung. Die symmetrische Gruppe ist endlich und besitzt die Ordnung . Sie ist für nicht abelsch.

Grundlegende Eigenschaften einer Gruppe

  • Das neutrale Element einer Gruppe ist eindeutig bestimmt. Sind nämlich und neutrale Elemente, dann muss sein, da neutral ist, und , da neutral ist. Somit folgt .
  • Es gilt die Kürzungsregel: Aus oder mit den Gruppenelementen folgt jeweils .[10] Dies sieht man durch
    .
Daraus ergibt sich, dass die Verknüpfungstafel einer (endlichen) Gruppe ein lateinisches Quadrat ist, bei dem in jeder Zeile und in jeder Spalte jedes Gruppenelement genau einmal vorkommt.
  • Die Gleichung ist stets eindeutig lösbar und die Lösung ist . Ebenso hat die eindeutige Lösung .
  • Das zu einem Gruppenelement inverse Element ist eindeutig bestimmt. Wenn und beide invers zu sind dann folgt:
  • Es gilt und .
  • Für alle Elemente gilt . Dies folgt aus der Gleichungskette
.
Somit ist zu invers.

Gruppenhomomorphismus

Gruppenhomomorphismen sind Abbildungen, die die Gruppenstruktur erhalten. Eine Abbildung

zwischen zwei Gruppen und heißt Gruppenhomomorphismus[11] oder kurz Homomorphismus, falls die Gleichung

für alle Elemente gilt. Ist die Abbildung zusätzlich bijektiv, so heißt sie Gruppenisomorphismus. In diesem Fall nennt man die Gruppen und isomorph zueinander.

Mit den Gruppenhomomorphismen als Morphismen bildet die Klasse aller Gruppen eine Kategorie, die üblicherweise mit Grp oder Gr bezeichnet wird.

Gegengruppe

Zu jeder Gruppe lässt sich die Gegengruppe bilden, indem man bei der Verknüpfung die Operanden gegenüber vertauscht:[12][13]

für alle (gleiche Grundmenge ).

Ist abelsch, so ist .

ist die Gegengruppe der Gegengruppe der Gruppe : .

Ein Antihomomorphismus zwischen zwei Gruppen ist ein Homomorphismus bzw. .

Produkte von Gruppen

In der Gruppentheorie werden verschiedene Produkte von Gruppen betrachtet:

  • Das semidirekte Produkt ist eine Verallgemeinerung des direkten Produkts, wobei die eine Gruppe auf der zweiten operiert. Es kann auch als inneres semidirektes Produkt zwischen einem Normalteiler und einer Untergruppe einer gegebenen Gruppe realisiert sein.
  • Das Komplexprodukt zweier Untergruppen einer gegebenen Gruppe ist durch paarweise Verknüpfung der Untergruppenelemente gegeben. Dieses Produkt ist allgemeiner auch für zwei beliebige Teilmengen der Gruppe sinnvoll.
  • Das amalgamierte Produkt ist eine Verallgemeinerung des freien Produkts, bei dem die Elemente einer gemeinsamen Untergruppe miteinander verschmolzen („amalgamiert“) werden.

Einzelnachweise

  1. George G. Hall: Applied group theory. American Elsevier, New York 1967, S. 1.
  2. Heinz-Wilhelm Alten: 4000 Jahre Algebra. Geschichte, Kulturen, Menschen. Springer, Berlin u. a. 2003, ISBN 3-540-43554-9, S. 358.
  3. Siegfried Bosch: Algebra. 6. Auflage. Springer-Verlag, 2006, ISBN 3-540-40388-4, S. 11.
  4. Damit ist die klammerlose Schreibweise wohldefiniert.
  5. Die Forderung der Eindeutigkeit ist redundant, denn aus der Maßgabe folgt: Ist ein neutrales Element, dann ist
  6. Die Forderung der Eindeutigkeit ist redundant, denn aus der Maßgabe folgt: Ist ein zu inverses Element, dann ist
  7. Siegfried Bosch: Lineare Algebra. 3. Auflage. Springer-Lehrbuch, Heidelberg 2006, ISBN 3-540-29884-3, S. 14.
  8. Siegfried Bosch: Algebra. 6. Auflage. Springer-Verlag, 2006, ISBN 3-540-40388-4, S. 11–12.
  9. Oleg Vladimirovič Bogopolʹskij: Introduction to Group Theory. Hrsg.: European Mathematical Society. Schweiz 2008, S. 53.
  10. Gerd Fischer: Lehrbuch der Algebra. 1. Auflage. Vieweg, Wiesbaden 2008, ISBN 978-3-8348-0226-2, S. 6.
  11. Siegfried Bosch: Algebra. 6. Auflage. Springer-Verlag, 2006, ISBN 3-540-40388-4, S. 13.
  12. Nicolas Bourbaki, Éléments de mathématique, Algèbre, ch. I, § 4, n°1; Paris, Hermann, 1970, p.29.
  13. Opposite Group. Planet Math, abgerufen am 2. November 2021 (englisch).

Read other information related to :Gruppe (Mathematik)/

Gruppe Lie-Gruppe Symplektische Gruppe Thälmann-Gruppe Funktionelle Gruppe P-Gruppe Soziale Gruppe Freie Gruppe Quasifuchssche Gruppe Lokalkompakte Gruppe Proendliche Gruppe Abelsche Gruppe Gruppe (Mathematik) Gruppe Kulturrevolution Allgemeine lineare Gruppe Gruppe Ulbricht Getec-Gruppe CHT-Gruppe Zander-Gruppe Klett Gruppe Dębczyno-Gruppe Classen-Gruppe Radeberger Gruppe Big. bechtold-gruppe Stern-Wywiol Gruppe Gruppe der 77 Heisenberg-Gruppe Vinzenz Gruppe Projektive lineare Gruppe Fröbel-Gruppe Teilbare Gruppe Grigortschuk-Gruppe Sporadische Gruppe Gruppe vom Lie-Typ Frank-Gruppe Harpst…

edt-Nienburger Gruppe Zyklische Gruppe Puteaux-Gruppe Gruppe Oberlauterbach Zurich Gruppe Deutschland Perfekte Gruppe Ama-Gruppe Adula-Gruppe Hamiltonsche Gruppe Thomas-Gruppe Z2 (Gruppe) Doppler-Gruppe Freie abelsche Gruppe Lańcut-Gruppe Endlich erzeugte abelsche Gruppe Gruppe des roten Schwans Einfache Gruppe (Mathematik) Präsentation einer Gruppe TPA-Gruppe ARP-Gruppe A-Gruppe Orthogonale Gruppe Buhlmann-Gruppe Poincaré-Gruppe OLL-Gruppe Militante gruppe (mg) Kartesische Gruppe Vivanco Gruppe Vulkan-Gruppe Gruppe Manouchian Lokalendliche Gruppe Gruppe E Ethnisch-religiöse Gruppe Schlott gruppe Algebraische Gruppe Knecht Gruppe Endliche Gruppe Rio-Gruppe Pro-auflösbare Gruppe Gruppe Zebra Dortmunder Gruppe 61 Dreimädchen-Gruppe Gruppe Giardino Hyperbolische Gruppe Gruppe Jugendfoto Berlin Moskauer Helsinki-Gruppe Schwarz-Gruppe Ehrenfelder Gruppe Gruppe 7 Ładoś-Gruppe Holomorph einer Gruppe Jedi’ot-Gruppe Remmers Gruppe Orfeus-Gruppe Jopp-Gruppe Holic-Gruppe Starlinger Gruppe Gruppe Freies Hamburg Consciousness-Raising-Gruppe Hvidsten-Gruppe Nesseler Gruppe Canes-Venatici-I-Gruppe Darstellung (Gruppe) Kastner Gruppe Mont-Blanc-Gruppe Stuttgarter Gruppe/Schule Gruppe von

Read other articles:

Raión de SoborСоборний район Raión urbano (distrito urbano) Escudo Coordenadas 48°27′00″N 35°04′00″E / 48.45, 35.0667Entidad Raión urbano (distrito urbano) • País  Ucrania • Ciudad DnipróSuperficie   • Total 44 km²Población (2006)   • Total 169 500 hab. • Densidad 3844,15 hab/km²Huso horario UTC+02:00 y UTC+03:00 Sitio web oficial [editar datos en Wikidata] Raión de Sobor (e…

Mundo Boca Programa de televisiónGénero DeportePresentado por Máximo Reca (2011 - 2012) Daniel Retamoso (2012 - presente)País de origen  ArgentinaIdioma(s) original(es) CastellanoProducciónProductor(es) ejecutivo(s) Mariano LópezProductor(es) Daniel Retamoso Leo Meloni Marketing CABJDuración 30 minutosEmpresa(s) productora(s) Hanga.tv [contenidos]LanzamientoMedio de difusión Horario Sábados 00:30 (Telefe)Miércoles 16:00 (Fox)Primera emisión 15 de octubre de 2011 a 7 de julio de 2…

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Agosto de 2022) As referências deste artigo necessitam de formatação. Por favor, utilize fontes apropriadas contendo título, autor e data para que o verbete permaneça verificável. (Outubro de 2021) A logo da franquia Command & Conqu…

Юшков Серафим Володимировичрос. Серафим Владимирович ЮшковНародився 4 (16) квітня 1888Трофимовщина, Саранський повіт, Пензенська губернія, Російська імперіяПомер 14 серпня 1952(1952-08-14) (64 роки)Малоярославець, Калузька область, РРФСР, СРСРПоховання МалоярославецьКраїна  Росій…

Diego Rosende Rosende en Palestino en 2019.Datos personalesNombre completo Diego Rosende LagosApodo(s) Fosforito, Mr. BeanNacimiento Santiago, Chile11 de febrero de 1986 (37 años)Nacionalidad(es) ChilenaAltura 1,72 metrosCarrera deportivaDeporte FútbolClub profesionalDebut deportivo 2005(Universidad Católica)Posición DefensaRetirada deportiva 31 de marzo de 2021[1]​Trayectoria Universidad Católica (2005-2006) Coquimbo Unido (2007) Universidad Católica (2007-2008) Unión Esp…

Wapen van Kralingen Het wapen van Kralingen werd gevoerd door de heren van Kralingen en later de gemeente Kralingen. Dit was een plaatsje ten oosten van Rotterdam dat in 1895 bij die gemeente werd gevoegd. Omschrijving Een achtpuntige rode ster op gouden veld. Deze summiere beschrijving maakt er geen melding van dat het wapen gedekt is met een markiezenkroon. De heren van Kralingen noch de gemeente hebben voor zover bekend ooit een wapenspreuk gevoerd. Het wapen van Kralingen is onder andere te …

ダンテ・ゲイブリエル・ロセッティDante Gabriel Rossetti 『ダンテ・ゲイブリエル・ロセッティの肖像』(1871年頃)ジョージ・フレデリック・ワッツ本名 Gabriel Charles Dante Rossetti誕生日 (1828-05-12) 1828年5月12日出生地 イギリス・ロンドン死没年 1882年4月10日(1882-04-10)(53歳)死没地 イギリス・ケント州バーチントン国籍 イギリス運動・動向 ラファエル前派芸術分野 絵画、詩人教

Provinsi Nusa Tenggara Timur Berikut ini adalah daftar sungai yang mengalir di wilayah provinsi Nusa Tenggara barat Menurut abjad Sungai Aesesa Sungai Benanain Luku Kadahang Luku Kadumbul Sungai Kambaniru Luku Melolo Sungai Noel Besi Sungai Noel Mina Sungai Noel Ponu Kali Polapari Sungai Wanokaka Wae Nuwa Wae Wera Menurut wilayah Daftar menurut abjad nama, dengan anak-anak sungai ditulis menjorok masuk Flores Aesesa Wae Nuwa Wae Wera Sumba Kadahang Kadumbul Kambaniru Melolo Polapari Wano Kaka Ti…

1988 single by HumanoidStakker HumanoidSingle by Humanoidfrom the album Global B-side'Stakker Humanoid (The Omen Mix)'Released1988, 1992, 2001, 2007RecordedDance Studios, Ealing LondonGenreAcid houseLabelWestside RecordsRephlexSongwriter(s)Brian DougansProducer(s)Brian DougansJohn LakerThe Future Sound of London singles chronology Stakker Humanoid(1988) Slam(1989) Stakker Humanoid is an 1988 track by Humanoid released in 1988 on the London-based label Westside Records. It is described by The…

Nogueiró e Tenões Wappen Karte Nogueiró e Tenões (Portugal) Basisdaten Region: Norte Unterregion: Cávado Distrikt: Braga Concelho: Braga Koordinaten: 41° 33′ N, 8° 23′ W41.54995-8.382825Koordinaten: 41° 33′ N, 8° 23′ W Einwohner: 5946 (Stand: 19. April 2021)[1] Fläche: 4,43 km² (Stand: 1. Januar 2010)[2] Bevölkerungsdichte: 1342 Einwohner pro km² Postleitzahl: 4715–385 Politik Bürgermeis…

American financial institution For other uses, see Amalgamated Bank (disambiguation). This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (March 2021) (Learn how and when to remove this template message) Amalgamated BankTypePublicTraded asNasdaq: AMAL (Class A)Russell 2000 Index componentIndustryBankingFoundedApril…

2004 film by Revathi Phir MilengeDirected byRevathiWritten byAtul SabharwalProduced byShailendra SinghStarringShilpa ShettySalman KhanAbhishek BachchanCinematographyRavi VarmanEdited byAshwin RamanathanMusic byShankar–Ehsaan–LoyNikhil-VinayBhavathariniDistributed byPercept Picture CompanyRelease date 27 August 2004 (2004-08-27) Running time125 minutesCountryIndiaLanguageHindiBudget₹5,50 crore[1]Box office₹5,43 crore[1] Phir Milenge (transl. We'll Meet…

Australian actress and model (born 1984) For other people named Rachael or Rachel Taylor, see Rachael Taylor (disambiguation). Rachael TaylorTaylor at the AACTA Awards in 2012Born (1984-07-11) 11 July 1984 (age 39)Launceston, Tasmania, AustraliaOccupation(s)Actress, modelYears active2000–presentPartnerMike Piscitelli Rachael May Taylor (born 11 July 1984) is an Australian actress and model. Her first lead role was in the Australian television series headLand (2005–2006). She then m…

LALBA Наявні структури PDBПошук ортологів: PDBe RCSB Список кодів PDB 4L41, 1A4V, 1B9O, 1CB3, 1HML, 3B0I, 3B0O Ідентифікатори Символи LALBA, entrez:3906, LYZG, lactalbumin alpha, HAMLET Зовнішні ІД OMIM: 149750 MGI: 96742 HomoloGene: 1720 GeneCards: LALBA Онтологія гена Молекулярна функція • calcium ion binding• зв'язування з іоном металу• lactose synthase activity•…

Slab-serif typeface designed by Heinrich Jost Beton Bold in a metal type sample Beton is a slab-serif typeface designed by Heinrich Jost and released originally by the Bauer Type Foundry from 1929 onwards, with most major styles released by 1931.[1][2] Beton is German for concrete (originally from French), a choice of name suggesting its industrial aesthetic. Beton is a geometric slab serif, reflecting the style of German geometric sans-serifs (in particular Futura) which had att…

Bài viết này là một bài mồ côi vì không có bài viết khác liên kết đến nó. Vui lòng tạo liên kết đến bài này từ các bài viết liên quan; có thể thử dùng công cụ tìm liên kết. (tháng 8 năm 2020) Anton BetyuzhnovThông tin cá nhânTên đầy đủ Anton Andreyevich BetyuzhnovNgày sinh 8 tháng 5 năm 1997 (26 tuổi)Nơi sinh Yaroslavl, NgaChiều cao 1,75 m (5 ft 9 in)Vị trí Tiền vệThông tin câu lạc bộĐ…

1980s Hong Kong television series The SuperpowerDVD coverGenreFantasyScience FictionComedy dramaStarringChow Yun-fatTony Leung Chiu-WaiOpening theme(天降財神) by Alan TamEnding themeby Alan TamComposerJoseph KooCountry of originHong KongOriginal languageCantoneseNo. of episodes20[1]ProductionRunning time45 minutesOriginal releaseNetworkTVBRelease21 March (1983-03-21) –15 April 1983 (1983-04-15) The Superpower (天降財神) is a TVB Scifi television series, premiered…

11th Parliament of New Zealand ←10th Parliament 12th Parliament→OverviewLegislative bodyNew Zealand ParliamentTerm23 January 1891 – 6 October 1893Election1890 New Zealand general electionGovernmentLiberal GovernmentHouse of RepresentativesMembers74Speaker of the HouseWilliam StewardPremierRichard Seddon — John Ballance until 27 April 1893†Leader of the OppositionWilliam Rolleston — John Bryce until 31 August 1891Legislative CouncilMembers46Speaker of the CouncilHenry Mil…

У этого термина существуют и другие значения, см. Circus. Circus Студийный альбом Бритни Спирс Дата выпуска 28 ноября 2008 Дата записи 2008 Жанры Данс-поп, электропоп Длительность 46:15 Продюсеры Тереза ЛаБарбера Уайтс (исп.), Ларри Рудольфruen (исп.), Bloodshy & Avant, Бенни Бланко, The Clutch, Нейт …

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shimukappu Station – news · newspapers · books · scholar · JSTOR (April 2021) (Learn how and when to remove this template message)Railway station in Shimukappu, Hokkaido, Japan Shimukappu Station占冠駅Shimukappu Station in the snow.General informationOperated b…

Kembali kehalaman sebelumnya