und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das „Z“ steht für das deutsche Wort „Zahlen“[1]). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ℤ.
Die obige Aufzählung der ganzen Zahlen gibt auch gleichzeitig in aufsteigender Folge deren natürliche Anordnung wieder. Die Zahlentheorie ist der Zweig der Mathematik, der sich mit Eigenschaften der ganzen Zahlen beschäftigt.
Die Repräsentation ganzer Zahlen im Computer erfolgt üblicherweise durch den Datentyp Integer.
Die ganzen Zahlen werden im Mathematikunterricht üblicherweise in der fünften bis siebten Klasse eingeführt.
mit natürlichen Zahlen und stets gelöst werden: . Beschränkt man auf die Menge der natürlichen Zahlen, dann ist nicht jede solche Gleichung lösbar.
Abstrakt ausgedrückt heißt das, die ganzen Zahlen bilden einen kommutativen unitären Ring. Das neutrale Element der Addition ist 0, das additiv inverse Element von ist , das neutrale Element der Multiplikation ist 1.
Anordnung
Die Menge der ganzen Zahlen ist total geordnet, in der Reihenfolge
.
D. h., man kann je zwei ganze Zahlen vergleichen. Man spricht von
positiven
,
nichtnegativen
,
negativen
und
nichtpositiven
ganzen Zahlen. Die Zahl 0 selbst ist weder positiv noch negativ. Diese Ordnung ist verträglich mit den Rechenoperationen, d. h.:
Die Addition und Multiplikation der Paare induzieren nun wohldefinierte Verknüpfungen auf , mit denen zu einem Ring wird.
Die übliche Ordnung der ganzen Zahlen ist definiert als
falls .
Jede Äquivalenzklasse hat im Fall einen eindeutigen Repräsentanten der Form , wobei , und im Fall einen eindeutigen Repräsentanten der Form , wobei .
Die natürlichen Zahlen lassen sich in den Ring der ganzen Zahlen einbetten, indem die natürliche Zahl auf die durch repräsentierte Äquivalenzklasse abgebildet wird. Üblicherweise werden die natürlichen Zahlen mit ihren Bildern identifiziert und die durch repräsentierte Äquivalenzklasse wird mit bezeichnet.
Ist eine von verschiedene natürliche Zahl, so wird die durch repräsentierte Äquivalenzklasse als positive ganze Zahl und die durch repräsentierte Äquivalenzklasse als negative ganze Zahl bezeichnet.
Diese Konstruktion der ganzen Zahlen aus den natürlichen Zahlen funktioniert auch dann, wenn statt die Menge , also ohne , als Ausgangsmenge genommen wird. Dann ist die natürliche Zahl in der Äquivalenzklasse von und die in der von .
Verwandte Themen
Eine ähnliche Konstruktion wie die Konstruktion der ganzen Zahlen aus den natürlichen Zahlen ist allgemein für kommutative Halbgruppen möglich. In diesem Sinn ist die Grothendieck-Gruppe von .